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The ground-state structural energies of several binary compounds

in the systems zirconium-niobium, niobium-ruthenium, and

zirconium-ruthenium were calculated using first-principles total-

energy electronic-structure calculations with the linearized muffin-tin

I orbital (LMTO) approximation. These energies were used in a cluster

expansion to determine the ground-state configurations of each of the

three binary systems. Notably, the calculations imply that the stable

equilibrium structure of the compound NbRu 3 is DO 19 . The

calculated excess structural energies are in good agreement with

reported measurements. The long-term objective of this approach is

the calculation of equilibrium thermomechanical properties of alloys

I without resort to experimental measurements, for example, phase

diagrams. Finite temperature phase stability calculations are

implemented using a generalized Ising model and the cluster variation

method (CVM). Vibrational free energy is included using the Debye-
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Grfineisen approximation. Predicted phase equilibria are in excellent I
agreement with measurements.

I
I
I
i
U
U
I
l
I
U
U
I
I

vii

i
i



I TABLE OF CONTENTS

I
Acknowledgements ............................................................. v

Abstract ......................................... vi

Table of Contents .................................................................... viii

List Of Tables ...................................................................... x

List Of Figures .................................................................. xii

Introduction ........................................................................ 1

Chapter 1. Reported Measurements And Total Energy

Calculations ....................................................................... 9

1. 1 Elemental properties ............................................. 9

1.2 Zirconium-Niobium ............................................. 9

1.3 Zirconium-Ruthenium .......................................... 12

1.4 Niobium-Ruthenium .............................................. 14

1.5 Total-energy calculations ....................................... 19

Zr-Ru ............................................................... 36

Nb-Ru ................................................................ 39

Zr-Nb .................................................................. 42

Chapter 2. Cluster Expansion ........................................... 47

2.1 Cluster expansion formalism ................................. 48

2.2 Obtaining cluster interactions from configurational

properties .................................................................... 50

2.3 Relaxation ............................................................ 52

2.4 Configuration Space ............................................. 57

2.5 How to choose a basis set ..................................... 63

viii

I



I
I

2.6 Convergence of the cluster expansion .................. 73 I
Zr-Nb ................................................................ 74

Nb-Ru .............................................................. 85 I

Zr-Ru ................................................................ 98

Chapter 3. Finite Temperature Calculations ......................... 104

3.1 Vibrational free energy ............................................... 104

3.2 Configurational entropy ............................................. 121

3.3 CVM solution method ................................................ 123 i

Conclusions .............................................................................. 131

Bibliography ............................................................................. 135

I
I
I
I
I
I
U
I

ix U
I

Sa si ! ! !! I



LIST OF TABLES

Table 1. 1. Measured properties of Zr, Nb. and Ru ........................ 10

Table 1.2 The Morse parameters fit to excess structural energy

for each compound in:

Nb -R u ........................................................................ 28

Zr-R u ........................................................................ 30

Zr-N b ......................................................................... 3 1

Table 1.3 Calculated bulk moduli

N b-R u ........................................................................ 33

Zr-Nb ......................................................................... 34

Zr-R u ........................................................................ 35

Table 2.1 a. Correlation functions for selected bcc structures ....... 68

Table 2.1 b. Correlation functions for selected hcp structures ...... 69

Table 2.1 c. Correlation functions for selected hcp structures.

Isotropic interactions are assumed ............................................... 70

Table 2.2. Optimum choices of basis sets for bcc structures for

each of the three criteria described in section 2.5 .......................... 72

Table 2.3. Errors of cluster expanded excess structural energy

of "extra" bcc structures (i.e., those not included in basis set) in

Zr-N b ........................................................................................... 76

Table 2.4. The interaction coefficients for cluster expansion of

bulk modulus and the volume of (a) bcc structures and (b) hcp

structures In Zr-Nb ....................................................................... 84

x



I

Table 2.5. Errors of cluster expanded excess structural energy i
of "extra" bcc structures (i.e., those not included in basis set) in u
N b-R u ....................................................................................... 9 0

Table 2.6. The interaction coefficients for cluster expansion of

bulk modulus and the volume of (a) bcc structures (b) hcp

structures, and (c) fcc structures in Nb-Ru .............................. 97

Table 2.7. Errors of cluster expanded excess structural energy

of "extra" bcc structures (i.e., those not included in basis set) in i
Zr-Ru ....................................................................................... 99

Table 2.8. The interaction coefficients for cluster expansion of

bulk modulus and the volume of (a) bcc- and (b) hcp-based

structures in Zr-Ru ...................................................................... 102

Table 3.1 a. Calculated Debye temperatures and Gr~neisen

parameters in:

N b-Ru ........................................................................ 117 i
Zr-R u ........................................................................ 119

Zr-N b ......................................................................... 120

I
I
I
I
I

xi

I
I



LIST OF FIGURES

Figure 1. 1 Zirconium-Niobium phase diagram compiled by ..... 11

Figure 1.2. Zr-Ru phase diagram from Reference 43 ................. 13

Figure 1.3 Measured lattice parameters of near equl-atomic

alloys in Nb-Ru .................................................... 16

Figure 1.4 Measured transition temperature of L1o phase,

Nb5o+xRu5 o-x, as a function ofx ............................ 16

Figure 1.5. Proposed Nb-Ru phase diagram from Reference 36.... 18

Figure 1.6 a Basal-plane projections of bcc based ordered

structures ............................................................ 21

Figure 1.6 b Basal-plane projections of hcp based ordered

structures ................ .................... 22

Figure 1.6 c Basal-plane projections of fcc based ordered

structures ........................................................... 23

Figure 1.7 Morse fit to calculated formation energies for NbRu 3 -

DO 1 9 ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 1.8 Calculated formation energies for selected

compounds in Zr-Ru ............................................ 37

Figure 1.9 Calculated atomic volumes and bulk modull of

selected compounds in Zr-Ru ............................... 38

Figure 1.10 Ground-state energies of selected compounds in

Nb-Ru .................................................................. 40

Figure 1.11 Change of crystal symmetry due to tetragonal

distortions of B2 structure .................................... 41

xii



I
I

Figure 1.12 ..alculated atomic volumes and bulk moduli of I
selected compounds in Nb-Ru ............................ 43

Figure 1.13 Calculated formation energies of selected

compounds in Zr-Nb ........................................... 44

Figure 1.14 Calculated atomic volumes and bulk moduli of

selected compounds in Zr-Nb ............................. 45

Figure 2.1 a Typical choices for clusters on the bcc lattice ........... 58

Figure 2.1 b Typical choices for clusters on the hcp lattice ........... 59 I
Figure 2.2 Calculated formation energies of bcc compounds in

Zr-Nb ................................................................. 75

Figure 2.3 Nearest-neighbor interactions in Zr-Nb calculated

using cluster expansions with different bases ........ 77

Figure 2.4 Pair interactions in Zr-Nb derived from cluster

expansions of varying ranges ............................... 80

Figure 2.5 Random energy for bcc alloys in Zr-Nb calculated I
using both globally and totally relaxed cluster

expansions ......................................................... 81

Figure 2.6 Excess structural energies of ZrNb with Pmmn and

LiRh structures from fitted Morse potentials and

cluster expansion .............................................. 83

Figure 2.7 Ground-state energies of selected compounds in Nb-

Ru and of random hcp and bcc alloys .................. 86 I
Figure 2.8 Projected and calculated structural energies for

NbRu with Pmmn, LiRh, and H1 structures ............. 87

I
xiii

I
I



Figure 2.9 Pair interactions derived from cluster expansion of

Nb-Ru hcp formation energies ............................. 89

Figure 2.10 Excess formation energy of random bcc alloys in

Nb-Ru derived from globally relaxed cluster

expansions in different approximations ................. 91

Figure 2.11 Cluster interactions of bcc alloys in Nb-Ru

including 5th nearest-neighbor interactions ............. 93

Figure 2.12 Structural energy of NbRu-L1o as a function of c/a

ratio .................................................................... 94

Figure 2.13 Pair interactions of NbRu-Llo as a function of c/a

ratio .................................................................... 95

Figure 2.14 Calculated formation energies for selected

compounds and random bcc and hcp alloys in Zr-

R u ........................................................................... 1 00

Figure 3.1 a Longitudinal versus bulk modulus for non-

magnetic cubic metals demonstrating the validity

of Equation 3.6 a ..................................................... 108

Figure 3.1 b Shear versus bulk modulus for non-magnetic

cubic metals demonstrating the validity of

Equation 3.6 b ......................................................... 108

Figure 3.2 Comparison of the measured Debye temperatures

with those predicted by Equation 3.8 for the cubic

non-magnetic metals ............................................... 109

Figure 3.3 Calculated coefficients of thermal expansion for bcc

N b ........................................................................... 1 12

xiv



I
I

Figure 3.4 Comparison of the measured values of Debye I
temperatures of the hexagonal metals with the

values obtained by adjusting the coefficient in

Equation 3.8 to reproduce a transition temperature

of 866*C .................................................................... 114

Figure 3.5 Calculated Zr hcp-bcc transition temperature as a

function of the Debye temperature (0o) of the hcp

phase with eo of the bcc phase = 268.93 K ............... 115 1
Figure 3.6 Calculated coefficients of thermal expansion of pure

Zr ............................................................................. 116

Figure 3.7 Calculated miscibility gap for Zr-Nb using different I
approximations of the CVM ....................................... 129

Figure 3.8 Calculated phase diagram for Zr-Nb along with data

from References 41 and 42 ....................................... 130

I
I
I
I
I
I

xv I
I



I
I
I

I INTRODUCTIONI
Progress in a long-standing objective in computational

3 materials science, the calculation of alloy phase diagrams from first-

principles, has been paced by the associated problems of accurate yet

I efficient total-energy calculations and statistical approximations of

the alloy partition function. The former is well understood, and the

evolution of Density-Functional Theory (DFT) [11 to computationally

3 suitable methods using the Local-Density Approximation (LDA) 121 is

a renowned (though, arguably, a qualified) success. The high

3 precision required of the total-energy band-structure methods for

phase-equilibrium calculations is attainable for most chemical

I systems. The connection between the total-energy calculations and a

general solution to the Ising problem is provided by a cluster

expansion in a series of multi-atom interaction energies 13). This

rigorous expansion may be inverted to calculate the total energy of

any lattice configuration using the multi-atom interactions. Two

main aspects of the cluster expansion method remain unresolved: the

convergence of the expansion and the effect of strain energy on the

i convergence. These two issues are central to this thesi", and a major

portion of this study is devoted toward a resolution.

First-principles phase diagrams have been computed with

3 partial success for noble metals 13-51, semiconductors 16], metal-oxide

1
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superconductors [71, ordering systems [8-171, and systems dominated I
by the effects of coherency 1181 or surfaces [191. Yet important

aspects are missing from each of these studies. For example,

vibrational free energy is rarely included, except using strictly

empirical means. Incorporation of elastic relaxation, critical in some

cases, is far from satisfactory resolution. Local-volume relaxation

has been included by somewhat different methods, as have

distortional modes, but as yet even this seemingly simple problem has I
no rigorous treatment. For even the simplest systems, successful

phase-diagram calculation requires much experience to complement

the impressive set of computational tools now available. 3
In this study phase stability in the systems zirconium-

niobium, niobium-ruthenium, and zirconium-ruthenium are 3
investigated via the cluster expansion using total energies obtained

with the Linear-Muffin-Tin-Orbital method [201 in the Atomic- I
Sphere Approx/mation (LMTO-ASA). The systems are well chosen to

test at different levels the method for calculating phase equilibrium

and for comparison with experimental data (though few data have

been reported for Nb-Ru). The Zr-Ru system is simple with only one

intermediate ground-state ordered compound -- ZrRu with the B2 3
structure. Zr-Nb is also a simple system, with a broad miscibility gap,

and is a good test for the accuracy of the method. The phase I
transition of Zr from hcp to bcc requires some treatment of

vibrational free energy. The Nb-Ru system is complex, and several

subtle aspects of phase equilibrium have eluded experimental 3
I
U
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_ investigators. The cluster expansion of the formation energy of alloys

in this system are used to resolve some of these controversial aspects.

The Ising Hamiltonian for a given lattice configuration can

3 be expressed through a series expansion in the cluster correlation

functions (variables describing the geometry in an average sense) of

3 each type of cluster of lattice sites comprising the lattice (crystal).

This expansion is rigorous and exact in the thermodynamlcal limit

1 [21, 221. The coefficients of the cluster expansion, known as the

effective chemical interactions provide the connection between the

first-principles total-energy calculations and the approximate

I expansion solutions to the Ising model. These interaction energies

can be obtained through inversion of the cluster expansions of the

total energies of several perfectly ordered structures. The application

of the cluster expansion using ab initio total-energy calculations was

I first made by Connolly and Williams [231, and is now a standard

method in first-principles phase-equilibrium calculations. For a

perfectly ordered structure the correlations may be ascertained a

priorL Thus, using the interaction energies, the cluster expansion

may be used to ascertain the formation energy of any ordered

3 structure. This obviates total-energy calculations of every likely

lattice configuration in the process of determining the stable-

I equilibrium ground-state structures.

The cluster-expansion method as used by Connolly and

Williams includes no implicit prescription for the volume dependence

3 of the formation energy of the partially ordered alloy. Sever

I
i
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techniques for including elastic relaxation into the minimization of I
the configurational energy have been studied. The so-called "G-" I

method [6, 101 is based upon the stringent presupposition that th

volume and bulk modulus of an alloy are independent of the chenmi...

order. This assumption allows a simple calculation of the elastic part

of the energy, G, dependent solely upon the concentration and the

volume-independent chemical part, e, dependent upon the

configuration. Sluiter et al [13] proposed a slightly more realistic I
model that is rigorously correct if the atoms in the alloy were jelium

soft spheres. The model uses a relaxation energy that is quadratic in

the volume. This energy is subtracted from the formation energy 3
leaving the unrelaxed energy. This unrelaxed energy is used in

calculation of the configurational free energy using the Cluster- 3
Variation Method (CVM), In contrast to the two preceding

techniques, which account solely for volumetric relaxation, Zunger et I
al [241 included some structural-relaxation modes in the total-energy

calculations, thereby including more realistic relaxation energies in

the configurational free energy. 1
Except in the thermodynamic limit of the expansion, the

interaction energies obtained from the inversion method are not 3
necessarily Invariant irrespective of the choice of t1- ordered

structures used in the expansion. Nor is there an a priori knowledge I
of the range (both length and complexity) beyond which interactions

become insignificant. These are the two principal aspects of

convergence of the cluster expansion and as such are examined I

I
I
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I closely in this (and other) first-principles phase-stability studies.

However, for a well converged cluster expansion the interaction

energies are sufficiently precise to reproduce formation energies within

5% of the total-energy calculations.

At finite temperatures, disorder and, commensurately,

configurational entropy become significant. The Ising model lends

itself to two solution methods: Monte Carlo techniques [25-281 and

I the CVM. Several studies have gauged the accuracy of the CVM by

comparison with Monte Carlo calculations (see, for example, [281).

The CVM was proposed by Kikuchi [29], simplified by Barker [301, and

3 reformulated by Morita 1311 in the context of a variational statement

of statistical mechanics. Sanchez and de Fontaine [22, 321 developed

the method into a formulation suitable for the study of alloys. The

method, which reduces to the well known Bragg-Williams or Bethe

U approximations in a single-site or pair approximation, prescribes a

series of increasingly higher order approximations of the free-energy

functional to an arbitrary level. The functional may then be

minimized with respect to the configurational variables, i.e., the

cluster probabilities or, alternatively, the correlation functions. This

3 minimization of the configurational free energy requires calculation of

the values of the correlation function of all sub-clusters of the

I maximum cluster. A small increase in the maximum cluster size

from, say, the joint tetrahedron-octahedron cluster in the fcc lattice

results in a large increase in the number of sub-clusters, thus

increasing significantly the number of operations. As with the cluster

I
I
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expansion of the formation energy, the convergence of this statistical I
approximation must be assured. In order to include longer-range

interactions in the Ising Hamiltonian without increasing the

maximum cluster size, many studies (for example 16, 10, 12, 16, and 3
33]) have employed the so-called renormalization method in which

long-range interactions are included using a Bragg-Williams type

approximation.

Vibrational free energy is a critical driving force behind some

phase transformations. As noted in Reference 15 the leading effect of

vibrational entropy is responsible for the curvature of the fcc-bcc

phase boundary in the Cu-Zn phase diagram. However. ab initto 3
treatments of vibrational effects are rarely included in first-principles

phase-stability studies. Instead, either alloy systems are chosen so 3
that the vibrational free energy is expected to be insignificant (e.g.,

all structures having same parent Bravais lattice), or atomic

vibrations are included empirically. Since ab initio calculations of

phonon spectra of compounds are common [e.g. 341, a state-of-the-art

first-principles study should incorporate vibrational effects without

resort to measurements. Moruzzi et al [351 calculated Debye

temperatures of several cubic transition metals using a very simple 3
model with good results. Their model, based on an effective speed of

sound derived from the bulk modulus, incorporates quasi-harmonic

dependence of the vibrational free energy through the Debye-

GrOneisen approximation. This technique is well suited to the CVM

and is employed in this study. 3
I
I
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I The first chapter of this thesis summarizes the reported

3 thermodynamic measurements of the three binary systems (Zr-Nb, Nb-

Ru, and Zr-Ru), and the results of the total-energy calculations using

the Linear Muffin-Tin-Orbital Method in the Atomic-Sphere

Approximation (LMTO-ASA) are presented. Reported experimental

data for the systems range in abundance for the three systems. For

Zr-Nb. phase diagram features and calorimetry data have been well

I documented. The phase diagram for Zr-Ru has been established, but

few measurements have been reported for the equilibrium phases

other than solubility limits. The phase diagram for Nb-Ru is by no

3 means determinate. Studies of the crystallography have pointed to

the phase diagram compiled by Massalski [36] (see Figure 1.5), but

3 results from the present study and those of Raub and Friltzsche 1371

and Das et al [381 show that diagram to be incomplete.

I Formation energies are extracted from the total-energy

calculations and are approximated using a volume-dependent Morse

potential. Several ground-state properties such as bulk moduli and

3 lattice constants are then available from these fit potentials which

are compared with reported measurements. The, as yet, undetermined

3 crystal structure of the NbRu 3 phase is posited to be hexagonal

DO19 ., and a "newly discovered" stable ground-state phase, Nb 3Ru

U with bcc DO3 structure is predicted.

* Chapter 2 contains a concise description of the cluster

expansion method and an in-depth analysis of its implementation in

3 this study. Several optimization schemes are examined, with no one

I
I
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method emerging as definitive -- though they prove to be invaluable. I
The convergence of the cluster expansion is gauged according to how

precisely the formation energy of an ordered configuration can be

estimated using the derived cluster interactions. Through this energy

expansion the ground-state crystal structures of the phases Nb3Ru

and NbRu3 are determined to be the most stable.

Finite-temperature free-energy calculations are presented in

Chapter 3. The CVM expression for the configurational free energy is I
set forth, and the solution method developed by Sanchez and de

Fontaine (321 is outlined. Included is the treatment of vibrational

free energy after Moruzzi [351. This allows calculation of thermal

expansion, and the coefficients of thermal expansion of the pure

elements as a function of temperature are calculated and compared 5
with measurements. The calculated miscibility gap in Zr-Nb is in

excellent agreement with measurements. I
I
I
I
I
I
I
I
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CHAPTER 1. REPORTED MEASUREMENTS AND TOTAL ENERGY

CALCULATIONS

In this chapter a review of reported measurements of thermochemical

properties of the three binary systems Zirconium-Niobium, Niobium-

_ Ruthenium, and Zirconium-Ruthenium is provided. In Section 1.5

the results of the total-energy calculations are presented, and some of

the calculated properties are compared with measurements.

I

1.1 Elemental Rroverties

I Table 1. 1 includes several basic properties of the constituent

elements of the system. Notably, the bulk modulus and density

increase with atomic number, but the melting temperature does not.

The hcp -* bcc transition of zirconium at 866 °C is driven primarily

by vibration modes 1391.

3

I 1.2 Zirconium-Niobium

-- Zirconium-Niobium is a simple system with small, positive

formation enthalpies. Figure 1.1 shows the phase diagram as

9
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compiled by Gullermet 1411. The high-temperature miscibility gap in I
the bcc phase field has a critical temperature reportedly at 988 0C at

an approximate concentration of 60.6 % Nb (42). The monotectoid

equilibrium temperature is reported as 610-620 0C with (Zr)

concentration between 0.6 and I weight percent Zr, Zr-rich bcc

concentration between 15 and 20.3 weight percent Zr, and Nb-rich

bcc concentration of 85 - 93 weight percent Zr [42].

1.3 Zirconium-Ruthenium II
Zirconium-Ruthenium is also a relatively simple system. Figure 1.2

shows the assessed phase diagram of Raub and Rdschel 1431. The 3
salient feature of the system is the compound ZrRu with B2 (CsCl)

structure. The ordered phase is stable until melting at approximately I
2100 °C. A high-temperature (above 1300 00) Laves phase (C14) at

ZrRu 2 is destabilized at temperatures below 1285 0C.

I
I
I
I
I
I
I
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Figure 1.2. Zr-Ru phase diagram from Reference 43.
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I
1.4 Nioblum-Ruthenium

The niobium-ruthenium phase diagram is, as yet,

incomplete. In fact, some controversy exists among authors

concerning the pure ruthenium phase. Jaeger and Rosenboom 1441

reported studies suggesting five allotropic transformations in

ruthenium. However, Hall and Crangle [451 performed high- I
temperature x-ray measurements showing a continuous phase with

the Mg structure. Their conclusion is that the anamolous calorimetry

data are due to non-structural second-order transitions of unspecified

nature. Nevertheless, Panteleemenov et al 146] proposed a phase

diagram for Nb-Ru assuming the existence of the high-temperature 3
polymorph 8.

Greenfield and Beck 147] made diffraction measurements of I
several alloys in the system. They postulated a B2-type ordering of

the near equi-atomic alloys based on the report of Dwight [481, but the

scattering power of Nb and Ru are nearly indistinguishable for 3
Chromium-K X-rays, and no superlattice peaks could be

distinguished. However, vanadium and tantalum which are in the

same group as zirconium, form B2 phases with ruthenium.

Raub and Fritzsche [37] and Hurley and Brophy [491 I
reported a tetragonal distortion at a concentration of approximately

40% Ru. Raub and Fritzsche postulated narrow two-phase regions of

bcc + bct near 40 atomic-percent Ru and bct + rhombohedral near 46

I
I
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I atomic-percent Ru. Hurley and Brophy mistakenly concluded that au single (Nb) phase field spans concentrations up to 55 atomic-percent

Ru, and that the equi-atomic alloy is a "distorted bcc phase." Das et

al [381 also reported the tetragonal phase at concentrations up to 46

% Ru where an orthorhombic distortion occurs. Figure 1.3 shows the

lattice-parameter measurements of Das et al and Raub and Fritzsche

of Nb-Ru alloys as a function of Ru concentration. It is clear that both

studies are in close agreement concerning the tetragonal distortion,

but they differ as to the lattice type of the equi-atomic alloy. Das et al

determined the transition temperature of the tetragonal phase to the

parent cubic phase at three concentrations (45.8%, 51. M% and

55.8% Ru) using resistance measurements. Based on their

measurements and the reports of Raub and Fritzsche and of

Greenfield and Beck they posited a low-temperature ordered face-

I centered orthorhombic phase, a higher-temperature face-centered

tetragonal phase with Llo ordering, and the high-temperature parent

cubic phase with B2 type ordering. However, no direct evidence of

ordering is reported due to the difficulty of detecting superlattice lines

for the system. Tsukamoto et al [50] also measured the temperature

3 of the tetragonal to cubic transition. Figure 1.4 shows the phase

boundary between the cubic and tetragonal phases for Nb5o+xRu5o-x

U proposed by Tsukamoto et aL

Hurley and Brophy reported a hexagonal compound of

unknown structure at NbRu 3. Popova [511 synthesized a high-

I pressure, high-temperature compound with the L1 2 (Cu 3 Au) structure

I
I
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Figure 1.3. Measured lattice parameters of near equi-atomic

alloys in Nb-Ru. From Das et al [38] and Raub and Fritzsche P71.
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Figure 1.4. Transition temperature of L10 phase, NboRu5o.

as a function of x. (From Tsukamoto et al [50]).
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i at NbRu 3 (which, incidentally, is superconducting at 15 K); however

no details were included in the abstract [511. Raub and Fritzsche

detected no distinct phase between the orthorhombic phase and the

terminal Ru phase.

Figure 1.5 shows the proposed phase diagram compiled by

i MassalskI [361. This phase diagram is essentially identical to that of

Hurley and Brophy except for the tetragonal (NbRu') to cubic (NbRu)

transition boundary reported by Tsukamoto and the B2 + bcc two-

phase region reported by Raub and Fritzsche. Massalski also labels

the NbRu 3 phase as L1 2 following Popova. No reference to the

3 orthorhombic phase reported by Raub and Fritzsche and by Das et al

is included.I
]
[
I
]
I
I
I
I
i
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Figure 1.5. Proposed Nb-Ru phase diagram from Reference 36. I
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1.5 Total-energM calculations

1 The Hamiltonian for a system with many interacting electrons may be
written

H =T+ U +V, [1.11

where T is the kinetic energy operator, U is the Coulombic electron-

electron potential, and V is the external potential including the

electrostatic interaction with fixed nuclei. The Density Functional

Theory (DFT) [11 states that V is a unique functional of the electron

I density and that the minimum energy is reached for the correct

electron density. The many-electron problem is intractable, and thus

the functional may not be ascertained. Kohn and Sham 121 applied

the DFT formalism to the one-electron problem by including a suitable

functional for the external potential. This functional requires the

calculation of the one-electron kinetic energy and an exchange-

correlation energy. The Local-Density Approximation (LDA) is made

I by adopting an analytical form of the exchange-correlation functional

which depends on the electron density and Is exact for a

homogeneous electron gas. The calculation of the one-electron band

structure is then required to obtain the kinetic energy. For

computational expediency linear band-structure methods areI
I
I
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required. Such linear techniques as FLAPW (full-potential augmented I
plane-wave 1521), ASW (augmented spherical wave [531), and LMTQO

(linearized muffin-tin orbital [54, 20]) are well-developed and in

general use. In the LMTO method, energy-independent basis

functions are constructed as the solutions of the one-electron

Schr~dinger equation for the atomic-like muffin-tin potential. The

solution method has leading error terms of second order in energy. In

this study, the Atomic-Sphere Approximation (ASA), which restricts U
the muffin-tin potentials to spherical symmetry, was included. In the

ASA, only high-symmetry close-packed structures may be treated

accurately.

In this study, spin-orbit interactions were included and the

exchange-correlation potential of Hedin and Lunqvist (551 was used.

The total energies, Etota. of each compound were calculated at 12

unit-cell volumes close to the equilibrium volume. The crystal I
structures used are represented in Figures 1.6 a, b, and c. The

figures show the basal-plane projections of one or more unit cells of

each of the structures in the bcc and hcp lattices. Filled and empty

circles represent atoms of type a or b, respectively. The smaller

circles denote atoms with positions displaced one half a unit cell

vector normal to the basal plane. Half-filled circles denote

alternations in the stacking sequence of atoms in the direction normal i
to the basal plane.

I
I
I
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3 Figure 1.6 a. Basal-plane projections of bcc based ordered structures used

in this study.I
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Figure 1.6 b. Basal-plane projections of hcp based crystal 3
structures used in this study. The smaller circles indicate
lattice positions c/2 above basal plane.
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I Figure 1.6 c. Basal-plane projections of ordered fcc structures used

in total-energy calculations.
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m
The cohesive energy per atom, ECOh. of each compound

AnBm was determined at each unit cell volume from:

Ecoh(AnBrj = E'tot(AnBm) - n. E atom - m. Eatom
m+n 11.21

where Eatom is the energy of the free atom calculated using the

Hartree method. The formation energy, E, is then calculated

according to the definition:

cob n.EAre +mEret

E(AnBn) = E (AnBm) - m+ n 
.

where E1Df is the reference energy of each pure solid. In this study m

the cohesive energy of each element in its stablest configuration is
ref hcp

used as the reference energy, i.e., Ezr = Ezr . ERu = ERu . and
ref bccE;Z = E~c, unless otherwise noted. Equation 1.3 may be generalized

to any configurational property F(AnBrr, thus defining an excess

configurational property, I
ref ref

FXS(AnBrn) = F(AnBm) - m + n 11.41 I
A Morse-type potential function of average atomic radius

(Wigner-Seitz radius), r: I
I
I
I
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E(r) = A - 2 D exp(-X(r-ro)) + D exp(-2.( r- ro)), 11.51

was then fit to the formation energies for each compound. Note that

the minimum energy is given by,

E = A - D. for r = ro. [1.61

Also note that if the cohesive energy of a solid is fit with a Morse

potential, the energy approaches that of the free atom(s) in the large

limit of r:I
E-+A , as r-- . [1.7]I

Thus the parameter A should be a linear function of the composition,

and there are only three degrees of freedom, ro, X, and D, in the fit.

3 However, due to (i) the artificial shape of the Morse potential, (ii) the

inaccuracy inherent in the solution method of the Hartree method for

Scalculating the energy of the free atoms, and (ii) the fact that the

Morse function is fit to data within a relatively narrow domain of r, the

I fit values of A do not agree precisely with the calculated free-atom

energies (errors are typically 10-20 mRy/atom). This, however, is not

a significant problem, as the fit of the potential within the domain of

3 interest -- atomic radii between those of the constituent atoms -- has

discrepancies on the order of tenths of milli-Rydbergs. Figure 1.7

shows the Morse fit to the calculated formation energies of NbRu 3

I
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Figure 1.7. Morse fit to calculated formation energies for NbRu3 - DO,, as a function of
Wigner-Seitz radius. Inset shows cohesive energy A - D. I
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I with a DO19 structure. The inset figure shows the overall shape of the

Morse potential and indicates the scale of the formation energy with

respect to the cohesive energy.

3 The calculated Morse parameters and minimum energies for

each compound studied are shown in Table 1.2 a-c. The average1 atomic volume is fLo = -7 ro3 . The experimentally determined

equilibrium atomic volumes of the pure elements compare with those

I calculated as follows:

hcp-Zr experimental - 157.00 a.u. 3  calculated - 166.82 a.u. 3

hcp-Ru experimental - 91.85 a.u. 3  calculated - 99.78 a.u. 3

bcc-Nb experimental - 133.18 a.u. 3  calculated - 121.26 a.u. 3

[
Typically, LDA calculations predict lower equilibrium volumes than

I measurements, and this effect is seen for niobium. However the

calculations for hexagonal structures were confined to lattices with
ideal close-packing, I.e., c/a = (8/3)1/2 = 1.63, whereas the measured

c/a ratios for Zr and Ru from Table 1.1 are 1.59 and 1.58 respectively.

This artificially high value for c/a accounts partially for the

3 overestimation of the atomic volume in the hexagonal structures. Due

to the constraints of the ASA the total-energy calculations were

generally confined to close-packed structures in this study -- though

some results for distorted lattices were included and are discussed

later in this section. Lu et al [561 used the (FLAPW) method to

I
I
I



I

28 U
Table 1.2 a. The Morse parameters fIlt to excess structural energy for each I
compound in Nb-Ru studied.

Compound/ r0 X D A Emin

Structure Ia.u.i (a.u.- II [Ry.! [Ry.I [Ry.!

Nblhcp 3.1878 1.0423 0.71738 0.74348 0.026101

Nb 3 Ru/DOl 9  3.1046 1.109 0.7056 0.71511 0.009519

NbRu/Pmma 3.0267 1.1887 0.69147 0.68674 -0.00473

NbRu 3 /DOI 9  2.9494 1.2793 0.67003 0.65837 -0.01166

Ru/hcp 2.8773 1.3938 0.63 0.63 0

NbRu/UiRh 3.0228 1.178 0.68868 0.68674 -0.00193

NbRu/Prntnn 3.0273 1.1825 0.68685 0.68674 -0.0001

NbRu/AB5 3.026 1.186 0.68989 0.68674 -0.00314

Nb/fcc 3.1912 1.0451 0.71835 0.74348 0.025128

Nb 3 Ru/LI 2  3.1071 1.1105 0.70641 0.71511 0.008705

NbRu/LIO 3.0265 1.1905 0.69351 0.68674 -0.00676

NbRu 3 /L1I 2  2.9492 1.2808 0.66935 0.65837 -0.01098

Ru/fcc 2.8813 1.3936 0.62399 0.63 0.006015

Nb 3 Ru/DO2 2  3.1066 1.1106 0.70559 0.71511 0.009521

NbRu 3 /DO 2 2  2.9519 1.2824 0.6664 0.65837 -0.00802

NbRu/NbP 3.0263 1.1938 0.69207 0.68674 -0.00532 1
NbRu/T1 3.0238 1.1966 0.69455 0.68674 -0.00781

Nb/bcc 3.1678 1.0438 0.74348 0.74348 0

Nb3Ru/DO3  3.0887 1.1153 0.73233 0.71511 -0.01722

NbRu/B2 3.0313 1.1966 0.69953 0.68674 -0.01279

NbRu/B32 3.0261 1.1845 0.69221 0.68674 -0.00546

NbRu 3 /DO 3  2.9698 1.2769 0.64682 0.65837 0.011555

Ru/bcc 2.9095 1.3885 0.58893 0.63 0.041073

NbRu/T1 3.025 1.187 0.69669 0.68674 -0.00995

NbRu/T2 3.0329 1.1987 0.69237 0.68674 -0.00563
NbRu/T3 3.0329 11.1987 0.69235 0.68674 -0.00561

I
I
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I Table 1.2 a continued

ro X_ D A Emin

NbRu/T4 3.0334 1.1856 0.69088 0.68674 -0.00414
Nb 3 Ru/T5 3.0968 1.1148 0.73046 0.71511 -0.01535

NbRu3 /T5 2.9728 1.2805 0.64568 0.65837 0.01269

Nb/bcc * 3.1725 1.0388 0.73884 0.74348 0.004647U Nb3 Ru/DO3* 3.094 1.1209 0.72558 0.71511 -0.01047

NbRu/B2 * 3.0278 1.2062 0.70209 0.68674 -0.01534

NbRu/B32 * 3.026 1.1934 0.69026 0.68674 -0.00351

NbRU3 /D03* 2.9649 1.2825 0.65243 0.65837 0.005945

Ru/bcc 0 2.9005 1.3878 0.60048 0.63 0.029522

NbRu/T1 * 3.0255 1.1909 0.69489 0.68674 -0.00814

NbRu/T2 * 3.0324 1.1939 0.6927 0.68674 -0.00596

NbRu/T3 * 3.0333 1.1898 0.68803 0.68674 -0.00128

NbRu/T4 * 3.0368 1.1898 0.68718 0.68674 -0.00043

Nb3 Ru/T5 * 3.1005 1.1197 0.72544 0.71511 -0.01032

NbRu 3/T5 * 2.9701 1.2814 0.64756 0.65837 0.010814

S*denotes distorted bcc lattice with c/a= 1. 122.

U
I
I
I
I
I
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Table 1.2 b. The Morse parameters fit to excess structural energy for each i
compound in Zr-Ru studied. I
Compound/ ro , D A Emin

Structure la.u.l [a.u."11 ftI.] IRy.I tRy.]

Zr/bcc 3.3994 0.84306 0.68675 0.68923 0.002483

Zr3Ru/D0 3  3.2437 0.963 0.69483 0.67442 -0.02041

ZrRu/B2 3.1221 1.0892 0.71137 0.65962 -0.05175

ZrRu/B32 3.1117 1.0636 0.6806 0.65962 -0.02099

ZrRu3 /DO 3  3.014 1.1992 0.64553 0.64481 -0.00072

Ru/bcc 2.9095 1.3885 0.58893 0.63 0.041073

ZrRu/TI 3.1125 1.0593 0.67913 0.65962 -0.01951 3
ZrRU3 /T2 3.1206 1.0617 0.67744 0.65962 -0.01782

ZrRu/T3 3.1191 1.0577 0.67142 0.65962 -0.0118

ZrRu/T4 3.1203 1.0458 0.66821 0.65962 -0.0086

Zr3Ru/T5 3.2536 0.94904 0.68999 0.67442 -0.01557

ZrRu3/T5 3.0155 1.2101 0.64394 0.64481 0.000865

Zr/hcp 3.4154 0.85552 0.68923 0.68923 0

Zr3Ru/D01 9  3.2654 0.94832 0.67978 0.67442 -0.00535

ZrRu/Pmma 3.127 1.0589 0.67989 0.65962 -0.02027

ZrRu 3 /DOI 9  3.004 1.1976 0.65615 0.64481 -0.01134 i
Ru/hcp 2.8773 1.3938 0.63 0.63 0

ZrRu/UiRh 3.1248 1.0405 0.66751 0.65962 -0.00789

ZrRu/Prnmn 3.1264 1.0475 0.66679 0.65962 -0.00718

ZrRu/H1 3.1252 1.0645 0.67235 0.65962 -0.01273 j

I
I
I
I
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I Table 1.2 c. The Morse parameters fit to excess structural energy for each

compound in Zr-Nb studied.

Compound/ ro X D A Emin

Structure la.u.J ja.u.'l IRy.] JRy.j IRy.J

Zr/bcc 3.399 .84306 0.68675 0.68923 0.00252

Zr3Nb/D03 3.337 .8886 0.69913 0.70279 0.00366

ZrNb/B2 3.281 .9366 0.70905 0.71635 0.00730

ZrNb/B32 3.278 .9397 0.71346 0.71635 0.00289

ZrNb3/DO3 3.222 .9903 0.72665 0.72992 0.00326

Nb/bcc 3.168 1.0438 0.74348 0.74348 0.00000

ZrNb/T1 3.277 .9386 0.71182 0.71635 0.00453

ZrNb/T2 3.278 .9366 0.71047 0.71635 0.00588

ZrNb/T3 3.277 .9367 0.71104 0.71635 0.00532

ZrNb/T4 - - 0.71013 0.71635 0.00622

Zr/hcp 3.415 .8554 0.68923 0.68923 0.0000

Zr3Nb/DO19 3.360 .8843 0.69120 0.70279 0.0116

ZrNb/Pmma 3.302 .9358 0.69678 0.71635 0.0196

ZrNb/Pmmn 3.302 .9418 0.69705 0.71635 0.0193

ZrNb3/DO19 3.246 .9870 0.70509 0.72992 0.0248

Nb/hcp 3.188 1.0423 0.71738 0.74348 0.0261

ZrNb/H1 3.304 .9381 0.69965 0.71635 0.0167

ZrNb/IARh 3.303 .9438 0.69718 0.71635 0.0192

I
I
I
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calculate total energies for hcp-Zr. They predicted an equilibrium I
volume of 158.92 a.u.3 and a c/a ratio of 1.593.

The pressure P is simply:

p M [1.81 U
av'

and the bulk modulus B is: I

B -V a- =V1a2 E [1.91

or, at the equilibrium volume

B(ro) = DX . I bar 11.10169ro 6.7977 E-9 (Ry/a.u.)

I
The calculated bulk moduli of each compound are shown in Tables

1.3 a-c. The only measured values of bulk moduli reported for these

systems are for the pure elements (see Table 1.1). The calculated bulk

modulus of Nioblum is 1.996 Mbar, the reported value 1.7 Mbar. For

Ruthenium the calculated bulk modulus is 3.319 Mbar, the measured

value, 3.21 Mbar. For Zirconium the calculated value is 1.153 Mbar,

the reported value is 0.83 Mbar. U

I

I
I
I
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i Table 1.3 a. Calculated bulk moduli for each compound in Nb-Ru studied.

Compound/ bulk Compound/ bulk

Structure modulus Structure modulus

__ __ _ IMbarl __ _ _ Mbari

Nb/hcp 1.908 NbRu3/DO3  2.771

Nb3Ru/DOI9 2.181 Ru/bcc 3.046

NbRu/Pmma 2.519 NbRu/TI 2.532

NbRu3/DOI 9  2.896 NbRu/T2 2.560

Ru/hcp 3.319 NbRu/T3 2.560

NbRu/URh 2.467 NbRu/T4 2.499

NbRu/Pmmn 2.475 Nb3Ru/T5 2.288

NbRu/HI 2.503 NbRu3/T5 2.780

Nb/fcc 1.919 Nb/bcc * 1.916

Nb3Ru/L12 2.188 Nb 3 Ru/DO3* 2.300

NbRu/L10 2.535 NbRu/B2 * 2.633

NbRu3/LI2 2.906 NbRu/B32 2.536

Ru/fcc 3.283 NbRu 3 /DO3* 2.825

Nb3Ru/DO22 2.186 Ru/bcc * 3.112

NbRu3/DO22 2.898 NbRu/T1 * 2.542

NbRu/NbP 2.543 NbRu/T2 * 2.541

Nb/bcc 1.996 NbRu/T3 * 2.506

Nb3Ru/D03 2.301 NbRu/T4 * 2.500

NbRu/B2 2.579 Nb3 Ru/T5 2.289

jNbRu/B32 2.505 NbRu3/T5 * 2.794

denotes distorted bcc lattice with c/a= 1.122.

U
I
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Table 1.3 b. Calculated bulk moduli for each compound in Zr-Nb studied. I
I

Compound/ bulk

Structure modulus

[Mbar]

Zr/hcp 1.153
Zr 3 Nb/DO 19  1.282

ZrNb/Pmma 1.454

ZrNb3/DO19 1.660

Nb/hcp 1.908

ZrNb/URh 1.463

ZrNb/Pmmn 1.460 3
ZrNb/H1 1.454

Zr/bcc 1.120

Zr 3 Nb/D0 3  1.291

ZrNb/B2 1.479

ZrNb/B32 1.500 1
ZrNb 3/DO 3  1.726

Nb/bcc 1.996 3
ZrNb/T1 1.493

ZrNb/T2 1.484 3
ZrNb/T3 1.486

I
I
I
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I Table 1.3 c. Calculated bulk moduli for each compound in Zr-Ru studied.

Compound/ bulk modulus

Structure IMbarl

Zr/hcp 1.153

Zr3 Ru/DO1 9  1.461

ZrRu/Pmma 1.902

ZrRu 3 /D0 19  2.445

Ru/hcp 3.319

ZrRu/URh 1.875

ZrRu/Pmrnn 1.826

ZrRu/H1 1.854

Zr/bcc 1.120

Zr3Ru/DO3  1.552

ZrRu/B2 2.102

ZrRu/B32 1.933

ZrRu 3 /D0 3  2.406

Ru/bcc 3.046

ZrRu/TI 1.914
ZrRu/T2 1.912

ZrRu/T3 1.882

ZrRu/T4 1.830

Zr3 Ru/T5 1.492

ZrRu 3 /T5 2.435I
I
I
I
I
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Zr-Ru I

The formation energies of the compounds in Zr-Ru are I
displayed graphically in Figure 1.8. The only stable intermediate

compound ZrRu has a B2 (CsCI) structure. The calculated formation

enthalpy is 51.75 milli-Rydbergs per atom. The measured value is

52.29 ± 2.59 toRy/atom [57]. The ground-state line extends from the

pure element points -- which by definition are zero -- through the I
compounds with the lowest energies at each concentration. In Figure

1.8 no compound has an energy which is lower than the linear

combination of the B2 compound with one of the pure elements. Of

course, only a small number (11) of total energy calculations have

been performed for this system, so the question as to whether an

unexamined compound might be stable looms large. This question is

addressed in Chapter 2. I
Pearson [581 reported the average atomic volume for ZrRu

(82) as 116.15 a.u.3 , the computed equilibrium volume is 127.48

a.u.3 . Mehl et al [591 calculated the total energy versus volume for

ZrRu using the FLAPW method and predicted an equilibrium volume

of 112.65 a.u. 3 .

Figures 1.9 a and b show the calculated atomic volumes and

bulk moduli of each compound in Zr-Ru. The excess atomic volume I
calculated according to Equation 1.4 is also shown in Figure 1.9 a,

and the dashed lines indicate a linear rule of mixtures for each lattice

type. The average volume obeys the linear rule with small negative

I
I
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deviations (approximately 6%). The bulk moduli of the intermediate

compounds deviate more drastically (18%), and, as seen from Table

1.3 c, the bulk modulus exhibits significant dependence upon the type

of ordering. The calculated bulk modulus of ZrRu (B2) is 2.102 Mbar,

and Mehl et al 1591 predicted 2.25 Mbar.

I
Nb-Ru

The ground-state diagram for Nb-Ru is shown in Figure 1. 10.

The ground-state line passes through Nb 3Ru with the DO 3 structure.

No such compound has been reported. Possibly due to the small

scattering difference between Nb and Ru. it is difficult to discern the

I ordered bcc structure from diffraction measurements.

A stable LI 0 phase with c/a = 1.122 is seen in the ground-

state diagram, and the average of the measured c/a and c/a ratios of

the orthorhombic phase at that composition is 1.1165 110]. This is

remarkable since the LMTO-ASA typically loses accuracy with

deviations from close-packing. Part of the explanation lies in the fact

that at c/a = 1 the lattice is bcc and at c/a = 42 - 1.414 the lattice is fcc

I (see Figure 1.11), thus bounding the aspect ratio of the Llo structure

with close-packed lattices. Further remarks on the stabilization of the

I

I
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I Figure 1.11. Change of crystal symmetry due to tetragonal

distortions of B2 structure.
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The stable structure of the NbRu 3 compound is not obvious I
from the ground-state diagram. Table 1.2 a shows the hexagonal

DO19 structure to have a slightly lower formation energy than the L12

structure. Notably, the constraint of close-packing in the total-energy

calculations yields a less negative energy than would be found upon

relaxation of the c/a ratio, thus the DO1 9 structure is certainly the

more stable.

The atomic volumes and bulk moduli of the fcc-, hcp-, and I
bcc-lattice structures in Nb-Ru are shown in Figure 1.12. As with Zr-

Ru, the deviations from an ideal rule of mixtures of the atomic

volumes is negative for each lattice type. That is, a straight line

between the volumes of the pure elements (indicated by the dashed

lines in Figure 1.12) of a single lattice type lies above the volumes of

all the intermediate compounds of the same lattice type. The

deviations of the volumes and of the bulk moduli from the straight i
line mixture rule are small (less than 3%).

Zr-Nb

The ground-state energies of the Zr-Nb system are shown in

Figure 1. 13. As expected from the well-documented phase diagram

there are no stable intermediate compounds. Figure 1. 14 shows the I
calculated atomic volumes and bulk moduli of each compound. As in

the other two systems, the volumes and bulk moduli of the

i
I
I
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Figure 1.12. (a) Calculated atomic volumes of selected

compounds in Nb-Ru. ; (b) Bulk moduli.
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I
I



46 I
intermediate compounds have small negative deviations from linear I
mixture theory.

The total-energy calculations predict ground-state structures

matching those reported by experimentalists with the exception of the

orthorhombic phase of near equi-atomic Nb-Ru alloys which is not

within the realm of the atomic sphere approximation. Additionally. 3
the ordering of the compound NbRu3 is posited to be DO19 , and an

undetected ground-state phase Nb 3Ru with DO3 structure is also I
predicted. The calculated atomic volumes of the elements fall within

9% of the measured values. The calculated atomic volume of ZrRu is

within 10% of the measured value. The calculated c/a ratio of the 3
NbRu LIo compound is within 0.5% of the measured value. The

calculated bulk moduli of the Zr, Nb, and Ru are within 18%0 and 3
39% respectively of the reported values, and the predicted valut

ZrRu is within 7% of the calculated value of Mehl et al [591. I
The total-energy calculations of the small number of

structures of Table 1. 1 are not sufficient to determine the complete

ground-state of these systems. Due to the fact that LDA calculations

for structures with more than eight atoms per primitive unit cell

become very expensive, only a small select set of structures is 3
practical. The cluster expansion described in Chapter 2 may be used

to estimate the formation energy of any ordered structure on a bcc, I
fcc, or hcp lattices. This expansion is a powerful tool which lends

confidence to the predicted ground-state configurations made in this

chapter.

I
I
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I CHAPTER 2. CLUSTER EXPANSIONI
In the next section, highlights of the general formalism of the

3 cluster expansion techniques developed by Sanchez et al [21, 221 are

reviewed. Only binary systems will be considered here, but the theory

has been generalized to multi-component systems by Sanchez et ai

i [2 11. The main result, that any function of lattice configuration

(used synonymously in this chapter with configurational property)

can be described by a cluster expansion, will be established, as will

several other useful notions.

The second section details how a truncated cluster

expansion can be inverted to derive the expansion coefficients

I (effective interactions) from a set of known configurational

properties, e.g., the cohesive energy. Section 2.3 sets forth several

schemes for Including structural relaxation in the cluster expansion.

3 A truncated cluster expansion is not unique, and the final three

sections of this chapter describe the optimization methods used to

insure adequate convergence of the expansion. The most important

method for testing the convergence is using the cluster expansion to

I predict cohesive energies of various ordered structures for which the

energies have been previously determined using the local density

approximation (LMTO) calculations. The results of the convergence

3 tests are discussed in Section 2.6.

47I
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I

2.1 Cluster expansion formalism UI
In the Ising model a binary crystal with N lattice-sites has 2N

possible configurations. To a site i occupied by an A-atom, a spin sl 3
of +1 is assigned, and for B-atoms -1. Each of the 2N possible

configurations is then described completely by the N-vector a - (si, I
s 2 , S3 ..... SN). A set of orthonormal characteristic functions, 4. for

N-dimensional discrete space spanned by a is given by 12 1]:

0-(a) = sl S= sh si ... S1, [2.11 U
I

where a = {il, i2 , 13, ... inJ includes every cluster of n sites in the

crystal lattice, and where the inner product is defined as: I

<--(a)4op(a) > -L OJ(a) 4{p(O) [2.212 N

I
Hence, there is a one-to-one correspondence between the set of

orthogonal functions 4D and the set of all clusters (X, including the I
empty cluster for which, Oo(O) = 1. 3

As 4 forms a complete orthonormal basis, any function of

configuration (configurational property), F(a), may be written as 1211: 1

I
I
I
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F(Y) = .Ja •(a), [2.31

I
where the sum extends over all inequivalent clusters in the crystal,

I and Ja , given by:

UJ,= < F(a). 0.(a) >

I Y _ g F(a) 4()(a) [2.41

2 NI
are the projections of F(a) on the orthogonal cluster basis, 0 -- often

called the effective interactions. Equation 2.3 is simplified by the

requirement that each Ja be the same for all clusters that are related

by any of the space-group operations of the crystal.

The correlation functions, 4, are defined as the expectation

values of the characteristic functions:I
= [12.51

l < SI S2 ... Sn, >

For a perfectly ordered crystal, the correlation function of a cluster

type is an average of the spin product over all equivalent clusters in

* the crystal:

I
I
U
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SP = ._s s .. SP. (2.6J
z,.N (Pd

where a labels each type of inequivalent cluster of which there are

Za- N in the crystal. Combining Equation 2.3 with Equation 2.5

leads to an expression for the expectation value of any configurational 3
property @-F:

N
O-F= < F(Y)>= Iz.J.n. [2.7)

N n-o

in terms of the configurational variables, 4. and the interaction

coefficients, Jn. The technique for determing the interactions is

discussed in the next section.

I
2.2 Obtaining cluster interactions from conflguratlonal

Since the sum in Equation 2.6 cannot be evaluated exactly

(there are on the order of 1023 terms), a truncated approximation 3
must be used, and the practical application of the representation of

the expectation value of a configurational function depends upon the I
rapid convergence of the cluster projections, Jn. The key step is

choosing, a prfori, a trial maximum cluster size and establishing the I
convergence of the truncated series, with the dual task of determining I

U
I



U

1 51

I the cluster interactions. The former is discussed in section 2.6. The

3 latter is the natural first step and is accomplished using a system of

equations of the form of Equation 2.6 for the value of the energy of an

ordered configuration p:

PE= I ZkO Jk [2.8]

I where k denotes the cluster type and P4 is the correlation function

corresponding to cluster k in the ordered structure p which is

evaluated directly from the geometry of the configuration. For

convenience Equation 2.8 Is rewritten:

M

I Pk [2.9]
k-O

I The energy E is not an average because the correlations are not

expectation values but rather geometric defined quantities. The basis

of the expansion, defined here for clarity, consists of the basis

3 structures p=1 ... m and the basis clusters k= 1 ... M. Therefore, for

a system of M equations, there exists an inverse:

-I

Jk= X.kp Ep , [2.101

I
I
I
I
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provided the matrix of coefficients Epk is not singular. Thus, from a I

finite set of values of configurational functions a set of cluster

interactions may be calculated.

Using Equation 2.9, Connolly and Williams 1231 calculated

cluster interaction energies from the first-principles total energies of a

set of ordered compounds. In the present study, such an expansion I
of the cohesive energies is used to examine cluster expansions for

several lattice types. To this end, the excess AF(a). of any

configurational function F(a) is defined according to: 3

AF(ca) a F(a) - (l-x) • F(A) -x. F(B). [2.111

where x is the compositional fraction of B for configuration a. and F(A) I
and F(B) denote the properties of pure A and B crystals respectively.

Note that the properties may have dependence on variables beside the

configuration a. For example. the cohesive energy has explicit

dependence on the average atomic volume. By establishing a

definition of the excess internal energy, a reference energy level for the

alloy free energy is defined implicitly.

2.3 Relaxation I

I
As mentioned above, the energy depends explicitly on the

volume. Therefore, Equations 2.8 and 2.9 must be generalized to

I
I
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I include explicit dependence of the cluster interactions of the volume

SV :1

-I

Jk(V)= Y_ E EpV) . 12.121IP

I The correlations themselves depend only upon the configuration.

However, there is no basis to suppose that the "true" chemical

interactions can be obtained from Equation 2.11 using a single value

of V. That Is, the cluster interactions of the equilibrium configuration

of the disordered alloy probably depend upon the configurational

energies of the basis structures in a more complex sense than the

above relation. If the equilibrium configuration can be determined by

I constraining each atom to some average volume and then minimizing

the energy with respect to this global volume, then Equation 2.11 is

appropriate. This approach is called global relaxation in this study.

I If it is assumed that each type of atom "prefers" some

particular volume irrespective of its environment (location in a

cluster), then the interactions can be relaxed locally -- at the expense

of excluding non-local effects. This total relaxation is achieved by

I rewriting Equation 2.11 as:

I " p Ep(Vp) 1 2.13]

I
I

I
I
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where Vp is, for example, the equilibrium volume of configuration p at I
absolute zero temperature. In section 2.6 it will be shown that

generally cluster expansions converge more rapidly with global

relaxation than with total relaxation.

Ferreira et al [6, 101 "split" the cohesive energy into chemical

(e) and elastic parts (G). By assuming that the equilibrium volume of

an alloy of fixed concentration is independent of the chemical order

they proposed the so-called e-G representation: I

E(a, V) = c(a) + G(x) [2.14) UU
The elastic energy G has explicit dependence on the concentration x

through a functional in which the equilibrium volume and bulk

modulus of an alloy are considered independent of the state of order

a. The chemical energy e is independent of volume. This approach led I
to satisfactory cluster expansions for semiconductor alloys [41, but the

underlying assumptions -- particularly, that the elastic constants are

independent of the state of order -- are questionable for intermetallics.

Sluiter et al [131 proposed a simpler scheme that does not

require the elastic energy be independent of the chemical order. The

approach consists of three steps.

1) All the atoms (A and B) in the alloy are compressed (or I
expanded) to the alloy volume V. Associated with this compression is

I
I
U
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I an elastic energy called in this study the volume deformation energy
E EVD:

SEvD = (l-x)( VA - V) 2 BA + x(VB - V) 2 BB [2.151
VA V8

I where VA, BA , VB , and BB are the equilibrium volumes and bulk

3 moduli of elements A and B. Note, EvD is positive.

2) The atoms are mixed isochorically at volume V to the

equilibrium state of order.

3) A relaxation energy is approximated:I
E relax = W[2.16]

3 where W is the difference between the alloy volume V and the ideal

alloy volume:I
W = V - (1-c) VA - CVB , [2.171I

and Q is concentration-dependent effective elastic constant. This

relaxation energy is then added to the configurational energy. The

I global relaxation method used in this study is equivalent to steps 1

and 2 outlined above.

3 Both the techniques of Sluiter et al and Ferreira et al

described above are restricted to volume relaxation (as is the methodI
I
I
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used in this study), i.e., the atoms are confined to the ideal positions i
on lattice points. This treatment ignores the often significant energy

associated with relaxation of atoms from their ideal positions. Zunger

et al 1241 include two structural relaxation modes in addition to the

volume deformation described above: cell-internal and cell-external

relaxations. The cell-external relaxation lowers the energy by relaxing I
the unit-cell vectors, e.g., the tetragonal distortion of CuAu or

deviation of the c/a ration in hexagonal structures. Cell-internal i
relaxations preserve the unit-cell vector lengths but allow relaxation of

atomic positions not constrained by the crystal symmetry. e.g.,

interplanar distances in CuPt-type structures. Note, this relaxation is

non-existent in certain structures such as Llo. Li 2 , and DO 2 2 . These

two relaxation modes often capture dominant effects which elude

analyses that include only hydrostatic relaxations. For example, in

this study cell-external relaxations lead to a change in lattice type of I
the equilibrium structure of NbRu 3 and of NbRu. Lu et al [241

reported large shifts in the computed electronic density of states I
caused by relaxation which produce better agreement with I
measurements. Due to the inapplicability of the LMTO-ASA to low-

symmetry crystal structures, cell-internal and cell-external

relaxations were not used extensively in this study.

Finally, Zunger et al [241 show that the effects of relaxation -- I
in particular, ceil-internal relaxation -- are critical in superlattices

with 3 or more repeat periods. Further, the standard form of the

cluster expansion, Equation 2.8, fails completely to determine the cell-
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I internal relaxation that produces the strain energy in the long-period

superstructures.

To overcome this deficiency Zunger, et al [24] used a

reciprocal-space formulation for the cluster expansion. The real-

space interactions J, are replaced with a single reciprocal-space

function J(k). This expansion leads to a rapidly convergent cluster

expansion which predicts accurately the results of valence force field

I model of long-period superlattice.

I
2.4 Conflluration Space

The method of extracting cluster interaction energies from

the configurational energies of a set of ordered structures has been

I presented. As mentioned in the preceding section a trial maximum

cluster size is chosen, and the convergence of the series in Equation

2.8 must be established. The studies cited previously [1. 1-131 used

cluster expansions including interactions up to fifth nearest

neighbors. Figures 2.1 a and b show clusters used in a typical

expansion for hcp- and bcc-based structures. The number of clusters

chosen determines the order of the system of Equation 2.8.

I The characteristic functions of Equation 2.3 form a complete

orthogonal basis of configuration space (discrete N-space) [21]. The

correlation functions form a dual orthogonal basis.

I
I
I
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o 0 0 0%0I

Cluster #3 Cluster #4 I
Cluster #2 nearest-neighbor pair 2 nearest-neighbor
point pair I

' I0 0 0 0

-0 0

Cluster #5 Cluster #6 Cluster #7

triangle tetrahedron 3 rd nearest-neighbor

pair I

o 0k 00 I

o ., 01

Cu-,ter #8 Cluster #9 Cluster #10

4t'. nearest-neighbor 5 th nearest-neighbor linear triplet I
pair pair

Figure 2.1 a. Typical choices for clusters on the bcc lattice. I
I
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S3 3 - nearest-neighbors pair

(in-plane)I
4 - nearest-neighbors pair

iO (out-of-plane)

3 
5- 2nd nearest-neighbors pairI

7 - "filled" triangleI
8 - out-of-plane

triangleI

T 6- "empty" triangle

9- tetrahedron

I Figure 2.1 b. Typical clusters and their designated

numbers for the hcp lattice.

I
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The probability xn(a) of finding a type-n cluster with

configuration Sn = I. J, ..., k) ( e.g., (+1. -i, -. ...1, +11) is:

N
- = n[2.181

= No. of n-type clusters with configuration an

Total no. of n-type clusters I
The occupation operator r'(p) is defined as 122):

t,(p)= j1+ iSp1 [2.191

= 1 if site p is occupied by i-type atom, and

=0 iff not.

Using the occupation operator, the n-type cluster probability may be

rewritten as [221:

x.(a) = - ~• 1r(p,) r(P 2)...rk(P.) . 12.201
N, (pI)

summing over all n-type clusters. Combining Equations 2.5 and 2.19

and expanding leads to an expression relating the cluster correlation

functions with the cluster probabilities [221: I

xn(C)= -L [11 + YAn(a) 4]1, [2.211 I
2

I
I
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I where the components An are sums of products of the cluster spins

ij .... k. The requirement that all cluster probabilities have positive

values, 0 < x5 < 1, leads to a set of constraints on the correlations, 4

[601:

1 + EA Na)} >02 , [2.221I0>0

I not summing on the empty cluster. Thus, for any choice of the

maximum cluster size, the configuration space (sub-space) is limited

to a convex polyhedron. The correlation vectors which form the K

vertices of the configurational polyhedron, 4(m), form the orthogonal

basis of the sub-space. Using barycentric coordinates, any possible

configuration, 4. may be expressed as:

7K- .p ml 12.231
r-I

where the Pm are non-negative coordinates. Combining Equation 2.23

with Equation 2.7 leads to the configurational description of the

energy using clusters p=1... K and structures m=1...K:I
K K

EYJP = p.E(m) [2.241
p-I M-l

n where

I
I
I
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E(k) =1.

is the energy of the state corresponding to vertex k. With this

representation, Sanchez and de Fontaine [601 have shown that all

possible ground-state configurations must correspond to a vertex or to 3
a linear combination of at most two configurations each

corresponding to a vertex [60). The lattice configurations I
corresponding to the correlation vectors then seem the natural choice

for the basis set of the expansion of Equation 2.8. Indeed, this choice

will be shown to be optimum (though sometimes elusive) in the next

section.

The enumeration of the vertices of the configurational 3
polyhedron is a difficult problem in linear programming and has been

accomplishe, only a limited number of cluster expansions. The I
range of clus nteraction energies for which different configurations

are the ground states have been delineated for hcp structures with up

to second nearest-neighbor interactions 1611, and fcc and bcc

structures including up to fourth nearest neighbors [62, 631. These

studies, however, did not include many-body interactions and relied 3
on the assumption that nearest- and next nearest-neighbor

interactions were dominant. Sanchez and de Fontaine (221 performed I
a full ground-state search for the fcc lattice including 10 sub-clusters

of the joint cluster formed by the regular tetrahedron (T). composed of

nearest neighbors, and the regular octahedron (0) which includes first

II ,
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I and second nearest neighbors. The results of the ground-state searchu using the T-O approximation yielded 17 possible ordered

configurations whereas the first and second nearest neighbor

approximation used by Kanamori 1621 yielded only 10 of those

structures. Wei et al 1241 showed that fourth-neighbor interactions

are comparable in magnitude to nearest-neighbor interactions for fcc-

based semiconductors. They performed a ground-state search of fcc

structures including the many-body interactions while limiting the

maximum unit cell size to fifteen atoms. This search, in contrast to

the vertex enumeration studies, calculates the correlation vectors of

all possible independent structures and then, using the cluster

expansion equation, the cohesive energies. Such a method is

employed in this study, in a limited manner, and Is discussed in

Section 2.6.I

U 2.5 How to choose a basis setI
For the alloy systems in this study (as well as most other

5 studies) interaction ranges longer than nearest neighbors are

required. Without knowing the vertices of the configurational

I polyhedron, a means of estimating the optimum choice of basis

structures for a given maximum cluster size is required. Three

techniques are considered -- yielding different conclusions:

(i) Random alloy convergence.

I
I
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(ii) Minimum eigenvalue norm. U
(iii) Maximum determinant method.

The expectation value of the point cluster, 41, depends only

upon the alloy concentration c:

41= 2c-1 . [2.261

In a random alloy each lattice site is equivalent, thus each site in a I
cluster has the same value of s, and the correlation function of a

cluster with k sites at:

random kI

,k = (2c-1) 12.271 I
Notably, at c = 0.5, all terms vanish except at the k = 0 term, i.e., the

empty cluster: I

F (c = 0.5) = JO 12.281

-random U
If the value of F can be calculated directly, using such techniques

as the CPA-GPM, then Equation 2.21 can be used to evaluate the

accuracy of the expansion.

Combining Equations 2.8 and 2.9: I

oi- ol kI pIF
k.p

[2.29]

I
I



m

I 65
m = 2: OQp Fp

where,

OQp k = k Ik--k p• [2.301

Thus, the cluster expanded configurational property of a random alloy

m is:

rand. rand.

S= Q p F[2.311
P

m where,

I rand. k -rP =Y_(2c - I -k p -12.32]

m k

The sensitivity of the random alloy property is:

OF nd. dmFP = QrP [2.331

I Ferreira et al [12] use this result to determine the stability of the

expansion of the excess cohesive energy. They integrate the norm of

QP over all concentrations:

I 1  
rand. rind.

y(k,p)= I QP Qp dc [2.34]I

I
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I
giving:

_-I _I 1 (-1 k+I. I

y(k,p) = - [2.3511
k.J p kPPIX 2(k+l+ 1)

The set of basis structures, k=1,...n, that yields the minimum value of U
y corresponds to the expansion least sensitive to errors in the

cohesive energy for the choice of clusters, p=1 ... n.

The second and third methods also use estimates of the

sensitivity of the interactions to errors in the excess cohesive energies.

From Equation 2.9, the sensitivity of Jk Is: I

M -I [2.361 U
I

Using a standard result of numerical analysis (see Wilkinson 1641),

Equation 2.35 may be refined to: 3
__A = C(=-) 12.371M!

where C(A) is the condition number of A, defined by:

I
c(A)=IAUA'I ( 2.381

I
I
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I and IN denotes some type of matrix norm. The norm used in this

3 study is:

T 1/2

14 = (max. eigenvalue of AA) [2.391
-I

The choice of E which minimizes C(E ) is deemed the optimum basis

structure.

Finally, noting that:

= I -- Z ='I IFP [12.401

the uncertainty in each potential &Jk depends upon the sum of the-I

absolute values of each element in the corresponding row of -k p * By

I Kramer's rule:

=-II Det (=_u)]

-k PI =i~k~j~p 1 2.411

I it is clear that the condition number of Equation 2.36 is minimized for

the choice of E for which the determinant is a maximum and the

determinant of each minor is minimum. Thus, the simple norm, the

determinant of the correlation matrix, - is adopted.

Figures 1.6 a and b show the bcc- and hcp-based structures

3 considered as candidates for use as basis structures. They are

chosen due to their small unit-cell sizes, a necessity for the LDAI
I
I
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Table 2.1 a. Correlation functions for selected bcc structures of I
Figure 1.1 a.

Structure No. 0

bcc (A) 1 1 1 1 1 1 1

D03 (A2B} 2 1 1/2 0 0 -1/2 -1

B2 (AB) 3 1 0 -1 1 0 1

B32 (AB) 4 1 0 0 -1 0 1

D0 3 (AB3 } 5 1 -1/2 0 0 1/2 -1

bcc (B) 6 1 -1 1 1 -1 1

T1 CAB) 7 1 0 0 -1/3 0 -1/3

T2 (AB) 8 1 0 -1/4 1/3 0 0 l
T3 (AB) 9 1 0 0 0 0 -1/3

T4 (AB) 10 1 0 0 1/3 0 -1/3i

TS AB) 11 1I 1/2 0 2/3 1/6 1/3

T5 (AB3} 12 1 -1/2 0 2/3 -1/6 1/3

Degener'acy 1 1 4 3 12 6l

I
I

I
I
I
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I Table 2.1 b. Correlation functions for selected hcp structures of

Figure 1. 1 b.

0 00 0 00 0 00 0 00 200 4

Structure # O * o.eo e4e° o oo0 o ase. 0 0'100000 00000 00 00 0000 0000 00C

h1 1 1 1 1 1

5 DO 9 (A3B) 2 1 1/2 0 0 1 -1/2 -1/2

Pmnma fAB) 3 1 0 -1/3 -1/3 1 0 0

Pmmn (AB) 4 1 0 1/3 -1/3 -1 0 0

D0 19 (AB3) 5 1 -1/2 0 0 1 1/2 1/2

hcp (B) 6 1 -1 1 1 1 -1 -1

ILIRh (AB) 7 1 0 -1 1 -1 0 0

H1 (AB) 8 1 0 0 -1/3 0 0 0
Degeneracy I I 3 3 3 6I

I

I
I
I
I
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Table 2.1 c. Correlation functions for selected

hcp structures. Isotropic interactions are

assumed.

Structure No.

hcp (A) 1 1 1 1 1 1 1

DOg9 (A3BJ 2 1 1/2 0 1 -1/2 -1

Pnma (AB) 3 1 0 -1/3 1 0 1

Pmmn (AB) 4 1 0 0 -1 0 -I

D0 19 (AB3) 5 1 -1/2 0 1 1/2 -1

hcp (B) 6 1 -1 1 -I -1 1

LIRh (AB) 7 1 0 0 -1 0 -I

H1 (AB) 8 1 0 -1/6 0 0 0

Degeneracy I 1 6 3 8 2
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I calculations. The correlation functions of clusters of up to fifth

nearest neighbors are given for each of these structures in Tables 2.1

a. b, and c. The first column is the crystal structure, and the second

column is the structure number provided for convenience. The rest of

the columns are the correlation functions for each of the cluster types

represented by the column heading. The final row is the cluster

degeneracy.

I Table 2.2 lists the best choices for a basis set according to

criteria Wi) maximum determinant, (ii) smallest eigenvalue, and

(iii) random alloy parameter for each of three different sets of basis

clusters A, B, and C. For cluster set A, the basis-structure set 1-6 is

the optimum choice for each of the criteria. This is not surprising

since the correlation vectors of these structures are the vertices of the

associated configuration polyhedron. For cluster set B, the three

I basis sets [1-61 + (7, 9, or 10) yield the same determinant. This

degeneracy is removed by criteria (it) and (iii). Notably, criterion (iii)

predicts an optimum basis set which excludes structure 3 (CsCl

structure) for both cluster bases B and C whereas criterion (i) is

optimized by basis sets which include the structure. These

convergence criteria for the expansion basis are used in the next

section for numerical evaluation of the convergence of the cluster

I expansion for the three different systems.

I
I
I
U
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Table 2.2. Optimum choices of basis sets for bcc structures for each of the three

criteria described in section 2.5. Note: the structure numbers in the basis sets are

given in Table 2.1 a.

Basis clusters* Optimization criterion

number of determinant eigenvalues random alloy

sub-clusters

A [1-61 [1-6] [1-6]

6

B [1-61 +9 [1-61 +9 1245678

7 [1-6] + 7 [1-6] + 7 1245689

[1-61 + 10

C [1-71+10 124568910 124567810

8 [1-71+8 12456789 1245671012

Cluster set A consists of clusters # 1, 2, 3, 4, 5, and 6 [see Figure 2.1a].

"B .......... 1,2,3,4,5,6,and7.

"C 1, 2,3,4, 5, 6, 7, and 9.
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I 2.6 Convergence of the cluster exMansion

Recall that Equation 2.8 allows an estimate of any

configurational property for a given choice of a basis set of structures

and maximum cluster size. The obvious method of gauging

I convergence of the cluster expansion is to evaluate the expansion

coefficients, i.e., the cluster interactions. The interactions should

vanish with interaction distance and with cluster complexity. The

value of each type of interaction should also converge to a stable value

as the size of the basis set grows. Thus, any configurational property,

for example, the cohesive energy calculated using Equation 2.8.

should converge to a value in a stable manner; note though, this is

I not necessarily uniform convergence. This second observation leads

to a direct method for evaluating the accuracy of the cluster

expansion: comparing the value of a configurational property

evaluated directly with the cluster-expanded value. In this section,

the convergence of a cluster expansion is judged by estimating the

cohesive energy of an ordered compound using Equation 2.8 and

comparing the value with the LDA value from Table 1.2. These

I assessments are performed for bcc- and hcp-based lattice structures

in Zr-Nb, Nb-Ru, and Zr-Ru. The success with which the cohesive

energies of the ordered compounds are predicted lends confidence to

the predictions for disordeT ed alloys.

I
U
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Zr-Nb

Figure 2.2 shows the ground-state excess cohesive energies

of selected hcp- and bcc-based compounds in the Zr-Nb system.

Clearly there are no stable intermediate compounds -- as expected in

system with a predominant miscibility gap. Using the different basis

sets advocated by each of the three optimization techniques shown in

Table 2.2, the excess cohesive energies of extra structures were

calculated using the cluster expansion with both global and total

volume relaxation. The resultant errors for each expansion are

summarized in Table 2.3 using different error norms. The expansion

using clusters up to second nearest neighbors converges quickly for

the globally relaxed case, but at least third nearest neighbors are

needed for the totally relaxed expansion. Omitting the B2 structure

from the basis set for expansions of up to fifth nearest neighbors

yields predictions with a larger error norm than the second neighbor

expansion. This effect is due, in part, to the strong dependence of the

B2 energy on the nearest neighbor interaction. Figure 2.3 shows the

unstable description of this interaction for expansions that omit the

B2 structure from the basis(curves #3, 4. and 5) and the very stable

result of basis sets of varying size that include B2 (curves # 1-3).

Figure 2.4 shows the derived interactions for the "best"

expansions with seven (up to third nearest neighbors) and eight

cluster interactions (up to fifth nearest neighbors). For each of the

expansions the nearest neighbor interactions are nearly identical.
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Figure 2.2. Calculated formation energies for selected

compounds in Zr-Nb. The lower figure shows only the

bcc structures.I
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Table 2.3. Errors of cluster expanded excess structural energy of "extra" bcc

stumctures (i.e., those not included in basis set) in Zr-Nb. Values are given for

globally relaxed potentials and (totally relaxed).

werror12i [ U2I lerrorl 121 /2

cluster basis max- e/2or, n-n'rr 2' n-/ .,

basis, [mRy.] [mRy.]

number

A6 1-6 .59 2.52) .19(.91) 4.0(21.0)

B 7 1-7 .49 (l.23) .20 (.35) 4.1 (7.4)

B 7 1-6 + 9 .32 (.69) .13 (.22) 3.0(5.4)

B 7 1245678 .89(1.22) .32(.41) 5.5(7.7)

B 7 1245689 .64(.69) .23(.22) 4.1 (5.4)

C8 1-8 .13(.42) .08(.11) 1.9(2.3)

C8 12456789 .53(.52) .27(.14) 4.6(2.3)
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The second nearest-neighbor interactions are identical for the I
expansions including second nearest and third nearest neighbors, but

the inclusion of fifth nearest neighbors causes a shift in the

interaction. The third- and fifth-neighbor interactions are small

(approximately 0.05 mRy. /atom) and nearly constant over the entire

concentration range. The magnitudes of the pair interactions are

closely related to the relative stabilities of alloys of equi-atomic

concentrations. At a concentration of 50%. the second nearest- I
neighbor interaction is approximately 2.5 times as large as the

nearest-neighbor interaction. The correlation functions of the two

pair clusters for the B2 and B32 structures are ," = -1. 4" = 1.
M 32 nst2n

1 = 0, -1 (see Table 2. 1). Thus, the contribution to the B2

formation energy of the second nearest neighbor interaction Is positive

(ferromagnetic) and destabilizing. However, the B32 structure is

stabilized by the relatively large negative (-2.8 mRy/atom) second

neighbor-interaction, and the B32 compound is much more stable

than the B2. Why is the the B32 structure not stable? The answer

lies in the empty cluster interaction which can be associated with the

random alloy formation energy. The random formation energies (both

globally and totally relaxed) as a function of concentration with those

of the bcc-based compounds are shown in Figure 2.5. Recall from

Equation 2.26 that the formation energy for a random alloy with 50% I
concentration is equal to the value of the effective interaction Jo, for

the empty cluster. As seen in Figure 2.5 the value of Jo is

approximately 4.1 mRy/atom. This interaction is the dominant and

I
I
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I destabilizing contribution to the formation energies of the compounds

near equi-atomic concentrations. The metastable, intermediate bcc-

based compounds 2, 4, 5, 7, and 9 are stable with respect to the

random alloy, which suggests short-range ordering. The difference

between the formation energy of a compound and the random

3 formation energy at that concentration is the ordering energy. Thus,

the unstable B32 compound has a negative ordering energy of 2.5

ImRy/atom.

A metastable hexagonal o) phase varying from P6/mmm

space group to P3ml with increasing Nb content may be retained by

quenching 1651. The hexagonal phases 1-6 are unstable with respect

to the random bcc alloy, however, so no connection is made between

3 the results of this study and those of 1651.

The cluster expansion on the hexagonal lattice requires

I tracing the effects of clusters that lie completely within the basal

plane or have out-of-plane vertices. As seen in Table 2.1 b, the

correlation functions depend upon the orientation of otherwise

3 identical clusters. If isotropic interactions are assumed, then the first

neighbor and first-neighbor triangles can be combined, yielding

effective correlation functions (see Table 2.1 c). Such an assumption

renders the correlation vectors for structures 4 (Pmnmn) and 7 (LiRh)

I identical up to (and including) second nearest neighbors. This

I
I

I
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Figure 2.4. Pair interactions in Zr-Nb derived from cluster expansions

of different range. The size of the basis set is indicated by the symbol

type: .i

a Nearest neighbors only. Basis = 1 2 3 4 5 6
O 3 rd nearest neighbors included. Basis = 1 2 3 4 5 6 7
o th nearest neighbors included. Basis = 1 2 3 4 5 6 7 8
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observation suggests an obvious check for the isotropy assumption: if

the formation energies for compounds with crystal structures 4 and 7

are approximately equal, then the assumption of isotropic short-range

interactions is valid. This is the case for the Zr-Nb system. Table 1.6

b and Figure 2.6 show the cohesive energies of the two compounds

(curves #2 and #3) as a function of average atomic volume which are

nearly identical (AE=O. 1 niRy. /atom). Curve #l is the projected

cohesive energy for both compounds using a cluster expansion of up

to nearest neighbors and assuming isotropy. Clearly, the error, 1.5

mRy./atom, indicates an unconverged expansion. If second nearest

neighbors are included in the expansion, and structure 4 is included

in the basis, then curve #2 is the projected energy for structure #7.

Thus, for Zr-Nb the hexagonal cluster Interactions are reasonably 3
converged using the isotropy assumption and including clusters of up

to second nearest neighbors.

The excess volumes and bulk moduli of the hcp-, and bcc-

based compounds were cluster expanded using the total relaxation.

The effective interactions are shown in Table 2.4 for each type of 3
cluster used in the expansion. The bcc expansion includes 2nd

nearest neighbors. The hcp expansion includes nearest-neighbor pair

interactions and includes the full isotropy assumptions made in the

energy expansion. The convergence of the bulk modulus effective

interactions Bt is rapid. The four-body interaction is four to five

orders of magnitude below 1 Mbar, the nominal size of the bulk
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Figure 2.6. Excess structural energies of ZrNb with Pmmn and LiRh
structures from fitted Morse potentials and cluster expansion.
The cluster expansion includes only nearest neighbors and uses
isotropy assumption and is indicated by curve #1. Curve #3 is theIMorse fit for the LiRh structure. Curve #2 is the the fit for the Pmmn
structure. When second nearest neighbors are included in the3 expansion, and Pmmn is included in the basis set, curve #2 becomes
the projected energy for the LiRh structure since the correlation vectors
for LiRh and Pmmn are identical when isotropic interactions are
assumed.
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moduli in this sytem. The convergence of the volume expansion is I
rapid for the bcc-based structures, and sufficient in the hcp alloys.

Table 2.4. The interaction coefficients for cluster expansion of bulk modulus and

the volume of (a) bcc structures and (b) hcp structures in Zr-Nb. The cluster labels

are from FIgure 2.1.

(a)

Cluster Effective interactions i
(label) Bi [Mbar] Vi [a.u. 31

Empty (1) -0.049120 -0.937820

Point (2) 0.001500 -0.069780

Pair (3) 0.009875 0.114747

2 nd pair (4) 0.003083 0.144064 U
Triangle (5) -0.000120 0.005817

Tetrahedron (6) 0.000062 0.007776

I
Cluster Effective interactions I
(label) Bi [Mbar] Vi [a.u. 31

Empty (1) -0.058440 -0.297440

Point (2) -0.000250 0.024432

Pair (3 4) 0.009563 0.061917

Triangle (6 7 8) 0.000031 -0.003060 3
.Tetrahedron (9) 0.000531 -0.037020

I
I
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SlNb-Ru

The ground-state energies of selected compounds in the Nb-

Ru system are shown in Figure 2.7. The stable-equilibrium structure

of the NbRu3 compound is predicted to be DO 1 9, but the margin of

stability with respect to the L1 2 structure (0.1 mRy. /atom) is on the

order of the precision of the total energy calculations. This delicate

I balance provokes the question of whether a different fcc or hexagonal

structure might have an even more negative (stable) formation energy.

To resolve this question the cohesive energies of several

candidate structures were predicted using the cluster expansion. For

the fcc and hexagonal cluster expansions, inmeractions of up to second

nearest neighbors were included. The correlation functions of all fcc-

and hcp-based structures with stoichiometry AB 3 and up to 16 atoms

I per unit cell were calculated. The unit cells were restricted to those

occupying a supercell obtained by doubling the standard unit cell size

in each principal direction.

The cluster interactions were obtained with a globally relaxed

expansion using the basis set deemed optimum by the maximum

3 determinant technique. The assumption of isotropy in the cluster

expansion of hexagonal lattice structures is invalid as shown in Figure

I 2.8 a. since the cohesive energies of the compounds with structures 4

and 7 have a significant difference (1.8 mRy/atom). The projected

I
I
I
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,/ I includes nearest neighbors, and

E ia V O
*'0 isotropic pair interactions are assumed.
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energy for the two structures using a nearest-neighbors expansion I
and isotropic interactions is also shown in Figure 2.8 a with an

obviously large error (- 5 mRy./atom). Figure 2.8 b shows the

projected energies for structures 7 and 8 in a nearest-neighbors

expansion with anisotropic pair interactions. The discrepancies are

as large as 15 toRy. /atom. Including second nearest neighbors

improves the expansion significantly. The projected energy for

structure 8 using this expansion is shown in Figure 2.8 c. The pair i
interactions of this well converged expansion are shown Figure 2.9.

No hexagonal or cubic structures were found with projected

formation energies more negative than that of the DO 1g. However, it

must be noted that the LMTO-ASA approximation loses validity for

hexagonal structures varying significantly from ideal close packing.

Thus, an improved energy analysis will require full-potential total-

energy calculations. I
The Nb-rich DO3 is also a predicted ground state, however

no observation of such a phase has been reported. A ground-state

search similar to the one for NbRu 3 was performed yielding no

compound more stable than DO3.

Table 2.4 shows the results of a convergence study of the bcc 3
expansion. The last column, the percent error norm, is of comparable

magnitude to the Zr-Nb bcc cluster expansion. Figure 2.10 shows the i
cohesive energy of the random bcc alloys calculated using global

relaxation and different basis sets. The random energy appears to be

well converged using the basis set {1 2 3 4 5 6 7). The

I
I
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Table 2.5. Errors of cluster expanded excess structural energy of

"extra" bcc structures (i.e.. those not included in basis set) in Nb-Ru.

cluster basis max I error I nn [nkerrorI2 ] 112 J2_[-ro_ 1f2

basis. [mRy.] [mRy.]

number 
[percent]

A 6 1-6 8.5(5.8) 2.8 (1.5) 10.9 (5.5) I
B 7 1-7 4.2(3.5) 1.0(1.2) 4.1(5.2)

B 7 1245678 6.6(10.4) 1.8(2.4) 6.4(7.9)

B 7 1-6+9 4.6(3.6) 1.0(.98) 4.0(3.7)

B 7 11245689 5.0(4.6) 1.7(1.3) 6.1(4.8)

08 124567810 8.5(8.5) 2.6(2.6) 8.9(8.7) 1
C 8 1-7+10 4.0(3.6) 1.2(l.1) 4.8(4.6)

C 8 124568910 5.6(5.6) 2.1(2.0) 7.2(6.9)

C 8 12456789 5.9(5.7) 1.8(1.8) 7.0(6.7)

C8 1-7+8 5.9(5.7) 1.6 (1.8) 7.5(7.2)

C8 1245671012 5.0(4.7) 1.7(1.7) 6.0(6.1) 1
I
I
I
I
I
I
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cluster interactions obtained from the expansion with a basis set (1 2 I
3 4 5 6 7 8) and interactions of up to fifth nearest neighbors are

shown in Figure 2.11.

A NbRu compound with the Li 0 structure is predicted to be I
stable as expected. Figure 2.12 shows the strong dependence of the

cohesive energy on the tetragonality of the phase. The calculated c/a

ratio is 1.122, which is identical to the measured value reported by

Hurley and Brophy [491. Das et al [381 observed a tetragonal to I
orthorhombic transition at 46 % Ru (see Figure 1.7). and the average

of the orthorhombic a/c and b/c ratios measured at a concentration

of 51% Ru is 1.126. An explanation of the stabilization of the NbRu

phase by a tetragonal distortion lies in an analysis of the pair

Interactions. Figure 2.13 displays the interactions derived from a

globally relaxed cluster expansion at the optimum atomic volumes for

each of three c/a ratios -- corresponding to a B2 phase, Llo phase I
with c/a=1.122, and a cubic Li 0 phase. The Li 0 phase is stabilized

by a change in sign of the third nearest neighbor interaction in

conjunction with a slight increase in the nearest neighbor interaction.

Further tetragonal distortion is destabilized by the "mixing" of what

were the first and second nearest neighbors of a bcc lattice to nearest

neighbors in an fcc lattice, i.e., the cubic Li 0 has a correlation

function of zero for the nearest neighbor cluster. I

I
I
I
I
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Figure 2.12. Structural energy of NbRu-L10 as a function of the

c/a ratio. At c/a=1 the structure is equivalent to B2, and at
c/a = 1.414 the structure is a cubic Ll . The dashed line indicates

the energy corresponding to the line of stability between Nb3Ru-DO 3  I
and NbRu 3-DO19.
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Table 2.6 shows the interaction coefficients from a cluster I

expansion of the excess bulk moduli and volumes of bcc-, hcp-, and

fcc-based structures in Nb-Ru. The convergence of the bulk modulus

expansion appears to be more rapid than for the volume expansion.

The tetrahedron interaction for the hcp volume expansion is relatively

large (one order of magnitude less than the pair interaction) as is the

case with Zr-Nb. I
I
I
I
I
I
I
I
I
I
I
I
I
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I Table 2.6. The interaction coefficients for cluster expansion of bulk modulus and

the volume of (a) bcc structures (b) hcp structures, and (c) fcc structures in Nb-Ru.

- The cluster labels are from Figure 2. 1.

i (a) _ _ _ _ __ _ _ _ _ _

Cluster Effective interactions

(label) BI Imbar] Vi la.u. 31

Empty (1) 0.010750 -1.502580

Point (2) 0.027500 -0.640950

Pair (3) -0.007250 0.185959

2 nd pair (4) 0.007500 0.223879

Triangle (5) -0.002290 0.053412

Tetrahedron (6) -0.000710 0.014518

Cluster Effective interactions

(label) Bi fmbarl Vt [a.u. 3 ]

Empty (1) -0.072940 -1.262280

Point (2) -0.004750 -0.041540

Pair (3 4) 0.011813 0.199157

Triangle (6 7 8) 0.000594 0.005192

Tetrahedron (9) 0.001031 0.033671

(c)

Cluster Effective interactions

_Bi Imbari Vi [a.u. 31

Empty -0.039790 -1.607730

Point -0.018030 0.116430

Pair 0.008256 0.255239

2 nd pair 0.002253 -0.014550

Triangle 0.001128 0.020825

Tetrahedron -0.004000 0.011547



98 i
I

Zr-Ru

Table 2.7 shows the error norms for bcc cluster expansions using the

basis sets optimized according to criterion L. The expansion seems to

converge rapidly with the inclusion of 3rd nearest neighbors, but

including 5th nearest neighbors does not improve the expansion.

Figure 2.14 shows the random alloy formation energies for hcp and I
bcc alloys in Zr-Ru. The energies were calculated using both total and

global relaxation. The difference between these two extreme methods

of volume, approximately 7 niRy/atom for both lattice types, is

significant, indicating the large effect relaxation has in this system.

The ordering energy of ZrRu with the B2 structure is 38 toRy/atom.

Based on the total-energy calculations reported by Lu et al [241 the

ordering energies for NiAl (B2) and Ni 3Al are 50 mRy/atom and 13.5 I
mRy/atom respectively.

I
I
i
l
i
I
I
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Table 2.7. Errors of cluster expanded excess structural energy of

"extra" bcc structures (i.e., those not included in basis set) in Zr-Ru.

Values are given for globally relaxed potentials and (totally relaxed).

1 cluster basis max I errori j I ern rI. n/ n t Ie1oI /

basis. [mRyj ImRy.]

munber I percent)

A 6 1-6 12.3 (6.5) 3.37 (1.7) 9.7(5.3)

B 7 1-6+9 2.8(6.4) 0.95 (2.0) 2.8 (6.0)

C 8 1-7+8 3.4 (5.0) 1.46 (1.7) 4.5 t5.6)

D 8 11-7+10 6.8(6.8) 1.74(1.8) 5.7(6.0
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I The cluster expansion coefficients of the excess volume and

bulk moduli in Zr-Ru are shown in Table 2.8. The interactions

converge rapidly beyond pair clusters as with Zr-Nb and Nb-Ru. The

3 value of the empty cluster interaction for the bulk modulus, -0.087

Mbar is the excess bulk modulus of the random alloy with an equi-

i atomic concentration. Thus, for a given lattice type it appears that

the effect of order on the bulk modulus is small, but the relaxed L10

structure has a bulk modulus of 2.633 Mbar, 0.2 Mbar higher than

the random bcc alloy modulus -- a significant difference.

I
I
I
i
I
I
I
I
I
I

i
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Table 2.8. The interaction coefficients for cluster expansion of bulk modulus and 3
the volume of (a) bcc- and (b) hcp-based structures in Zr-Ru. The cluster labels are

from Figure 2.1. 1

(a) _ _ _ _ _ _ _ _ _ _ _ _

Cluster Effective interactions

(label) Bi Imbar] V1 [a.u. 31 I

Empty (1) -0.087120 -5.228230 U
Point (2) 0.054500 -1.210090

Pair (3) -0.002370 0.797773

2 nd pair (4) 0.026583 0.743473

Trangle (5) -0.004540 0.100842 I
Tetrahedron (6) 0.002812 -0.032210

Cluster Effective interactions

(label) BI Imbar] Vi [a.u. 31 I

Empty (1) -0.266750 -3.786960 3
Point (2) 0.049500 -0.627460

Pair (3 4) 0.041750 0.656809 3
Triangle (6 7 8) -0.006190 0.078431

Tetrahedron (9) 0.008125 -0.076950 1
I
I
I
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I As seen from this section the effective interactions extracted

from the Morse-type equations of state via Equation 2.8 provide an

adequate description of the alloy energy. Clearly, a more

comprehensive treatment of relaxation is required to advance the

accuracy of the cluster expansion to complete reliability. Additionally

the use of a full-potential LDA total-energy calculation is needed in

the cases where structural relaxation is significant; especially for

I hexagonal metals. The optimization criteria for selecting the

expansion basis was indispensable. For even these small sets of

structures most combinations of basis sets produced inadequate

3 expansions. There remains no rigorous selection method for the basis

structures or clusters. Yet, combining the simple criterion of the

3 maximum determinant of the correlation matrix in combination with

expanding the size of the basis by selecting clusters in an, as yet, non-

I rigorous heirarchy of increasing cluster range and complexity does

produce sufficiently accurate expansion for phase stability

calculations.

I
I
I
I
I
I
I



i CHAPTER 3. FINITE TEMPERATURE CALCULATIONS

The solution to the Ising model of the alloy free energy is

accomplished using the CVM. Section 3.1 outlines the assumptions

used to incorporate vibrational free energy into the CVM. The

expression for configurational entropy is developed in Section 3.2.

The solution technique is outlined in Section 3.3, and calculated

phase equilibrium diagram for Zr-Nb is compared with reported

measurements.

I
3.1 Vibrational free energy

In the Debye approximation, the velocity of sound is

constant for each polarization as in the case of a classical elastic

3 medium. The resulting linear dispersion relation leads to the well-

known result (see, for example, Kittel [401):I
oD = (67t2N/V)1/3v , [3.11

for a crystal with N primitive cells of volume V. and wD is the

characteristic cut-off frequency. Further, if the velocity is assumed to

I be independent of the polarization, the characteristic frequency is

104I
I
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related to a single characteristic temperature, the Debye I
temperature, by:

A wD = k OD. [3.21 3

where h is Planck's constant, h, divided by 27c, and k is Boltzmann's 3
constant. Using the the velocity of sound in an elastic isotropic

continuum: I

v[ B/p ]1/2. [3.31 iI
where B is the bulk modulus and p the density leads to: I

= (67) 13 16 (-B)1 2  [3.4 a]

= 67.48 ( ,/2  [3.4 b] I
for the Wigner-Seitz radius r in atomic units, the atomic mass, M in

kg, and the bulk modulus in kbar, the coefficient 67.48 has units of

Kelvins - seconds. Equation 3.4 b leads to estimates of Debye 3
temperatures much larger than experimentally determined values.

The discrepancy arises from the treatment of the velocity of sound.

1
I
I
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I Anderson [661 writes an average velocity of sound as:

v 2 +t [3.5 a]I
[3tV vi

i where,

Vt = fST7, [3.5 b]

I and

S v, f= T. [3.5 cl

for longitudinal and shear moduli, L and S. Moruzzi et al [351

combine Equations 3.5 a-c with the observation of Anderson that for

the non-magnetic cubic elements:I
L=1.42B , [3.6a]

I which is equivalent to the assumption that Poisson's ratio is

approximately 1/3. Figure 3.1 a shows longitudinal and bulk moduli
I for several cubic transition metals along with the functional result of

Equation 3.6. Anderson's data also imply:

I
i S = 0.30 B , [3.6 b1

I
I
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I

(see Figure 3.1 b). From these two assumptions an average velocity of

sound is:

r1'/23
v = 0.617[IJ 13.7) I

which leads upon substitution into Equation 3.4 to:

0D=41.63(Ma)l [3.81

Figure 3.2 compares the values predicted by Equation 3.8 with I
experimentally determined Debye temperature for the cubic non- 3
magnetic elemental metals. Notably, a least-squares fit through the

measured values yields an effective coefficient of 46.23 K-sec. I
The anharmonicity of the binding energy curve leads to

volume-dependent effects in the vibration spectrum that can be

described simply by the Graneisen relation: I

y=- % or [3.10 a]T=alnV 'I

ED=(• -•]D IV [3.o10 I
I
I
I
I
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Figure 3.1 a. Longitudinal versus bulk modulus for non-
magnetic cubic metals demonstrating the validity of

Equation 3.6 a. (From Refence 35).
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Figure 3.1 b. Shear versus bulk modulus for non-magnetic
cubic metals compared with relation of Equation 3.6 b.
(From Reference 35).
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Figure 3.2. Comparison of the measured values of Debye 3
temperatures with those predicted by Equation 3.8 for the
cubic non-magnetic transition metals. 3
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I If a constant (volume-independent) Poisson's ratio is assumed, then:

6 2 InVB [3.11 a]

I
or:

2
2 .voP/aV [3.11 b]

32 ariaV

I
The validity of this relation rests upon the assumption that all

vibrational modes are equally excited which is, effectively, a high-

temperature average. Moruzzi et al use a low-temperaturp average of

the GrOneisen constant on the grounds that most thermal expansion

occurs at low temperatures. Accordingly, they refer to the result of

Barron [67], that by defining appropriate high- and low-temperature

m averages of the GrOneisen constant, yHT and y LT:

I r - YLT 1 13.121

Combining Equation 3.12 with Equation 3.11 b:

Y--�YLT - Vap/•V 2  [3,13]-- 2 a P/aV

I
I
I
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On the same grounds as Moruzzi et al, Equation 3.13 is used in this I
study. The calculated Debye temperature for Nb is 343 K and the

GrOneisen parameter is 1.65 The experimentally determined values

are 241 K and 1.74.

The volume dependence of the Debye temperature allows

incorporation of thermal expansion into the vibrational free energy

(see for example, Kittel [401):

"I~

[1D eT-l 31n (1-Ie-r [3.141I

where XD = OD/T.

Combining Equation 3.14 with the Morse potential allows

computation of equilibrium volumes at finite temperatures and,

therefore, coefficients of thermal expansion. Figure 3.3 shows the

calculated thermal expansion coefficients of Nb as a function of

temperature along with measured values. Also shown are coefficients I
calculated by Moruzzi et al.

I
I
I
I
I
I
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Figure 3.3. Calculated coefficients of thermal expansion for bcc Nb.
The solid line uses the total energy results of this study, and the dashed
line uses those of Reference 35. The measured values are from

Reference 68.
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The development of Equation 3.8 is Justified only for cubic I
metals. As yet. no comparably simple treatment for hexagonal metals

is reported. Figure 3.4 shows experimentally determined Debye

temperatures versus for the hexagonal transition metals. A

least-squares fit yields an effective coefficient of 57.54 K-sec.

An ad hoc treatment of vibrational modes similar to I
Equation 3.8 for hexagonal alloys is used in this study. Using

Equations 3.8 and 3.14 the transition of pure zirconium from hcp to

bcc at 8660C is reproduced by introducing an effective coefficient of

45.67 K-sec. The induced transition temperature is quite sensitive to

the choice of the coefficient as is shown in Figure 3.5. This coefficient

is adopted in this study for simplicity, pending a more fundamental

analysis. The calculated thermal expansion of hcp zirconium is I
shown in Figure 3.6. The calculated Debye temperatures and

Gruneisen parameters for each compound are shown in Table 3.1 a-c.

Tsukamoto [50] determined the Debye temperature of the partially

ordered Llo compound Nb54Ru 4 6. The measured value is 370 K, and

the value computed for NbRu Lo0 in the present study is 370.42 K

(see Table 3.1 a).

I
I
I
I
I
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Figure 3.4. Comparison of the measured values of Debye
temperat;rLs of the hexagonal transition metals with the values
obtained tv adjusting the coefficient in Equation 3.8 to reproduce.
a transition temperature of 8660C.
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Table 3.1 a. Calculated Debye temperatures and Graneisen parameters for each I
compound in Nb-Ru studied. I

Compound/ Debye GrOneisen

Structure temperature parameter
[HI

Nblhcp 369.52 1.66

NbzRu/DOlg 385.86 1.72

NbRu/Pmma 405.10 1.80

NbRu 3 /DO 19  424.29 1.89 I
Ru/hcp 443.94 2.01

NbRu/URh 400.64 1.78

NbRu/Pmmn 401.59 1.79

NbRu/HI 403.77 1.79

Nb/fcc 337.98 1.67

Nb 3 Ru/L12  352.38 1.73

NbRu/L10 370.42 1.80

NbRu 3 /L1 2  387.40 1.89

Ru/fcc 402.74 2.01

Nb 3 Ru/DO22  352.19 1.73

NbRu 3 /DO 22  387.05 1.90 I
NbRu/NbP 371.00 1.81 I

I
I
I
I
I
I
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i Table 3.1 a continued.

Compound/ Debye Grineisen

Structure temperature parameter

[K_

Nb/bcc 343.43 1.65

Nb 3Ru/DO3  360.29 1.72

NbRu/B2 373.92 1.81

NbRu/B32 368.20 1.79

NbRu 3 /DO3 379.62 1.90

Ru/bcc 389.82 2.02

NbRu/T1 370.11 1.80

NbRu/T2 372.64 1.82

NbRu/T3 372.64 1.82

NbRu/T4 368.20 1.80

Nb 3 Ru/T5 359.74 1.73

NbRu 3 /T5 380.43 1.90

I

i

i
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Table 3.1 b. Calculated Debye temperatures and Graneisen parameters for each m

compound in Zr-Ru studied.

Compound/ Debye GrOneisen

Structure temperature parameter

Zr/hcp 300.07 1.46

Zr3 Ru/DOl 9  326.08 1.55

ZrRu/Pmmna 359.44 1.66

ZrR•3/DO19 394.35 1.80

Ru/hcp 443.94 2.01

ZrRu/UiRh 356.76 1.63

ZrRu/Pmmn 352.16 1.64

ZrRu/H1 354.78 1.66

Zr/bcc 268.95 1.43

ZT3 Ru/D03 305.32 1.56

ZrRu/B2 344.17 1.70

ZrRu/B32 329.49 1.65

ZrRu3/D03 357.18 1.81

Ru/bcc 389.82 2.02

ZrRu/T1 327.91 1.65

ZrRu/T2 328.16 1.66

ZrRu/T3 325.50 1.65 I
ZrRu/T4 321.03 1.63

Zr 3Ru/T5 299.82 1.54 1

ZrRu 3 /T5 359.41 1.82 I
I
I,
I
I
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Table 3.1 c. Calculated Debye temperatures and Gruneisen parameters for selected

structures in Zr-Nb.

Compound/ Debye Grlneisen

Structure temperature parameter
[K]

Zr/hcp 301.07 1.46

Zr3Nb/DO1 9  313.12 1.49

ZrNb/Pmma 329.82 1.55

ZrNb 3 /DOI 9  351.60 1.55

Nb/hcp 372.88 1.60

I ZrNb/LiRh 325.07 1.66

ZrNb/Pmmn 330.55 1.56

Zr/bcc 268.93 1.43

Zr3 Nb/D0 3  285.43 1.48

ZrNb/B2 302.24 1.54

ZrNb/B32 304.24 1.54

ZrNb 3 /DO 3  322.82 1.60

Nb/bcc 343.44 1.65

ZrNb/T1 303.48 1.54
1 ZrNb/T 302.61 1.54

ZrNb/T3 302.77 1.53

I
I
I
I
I
I
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I

3.2 Configulrational entrom I

I
In this study the configurational entropy is calculated using

the cluster variation method (CVM). The CVM is based on the fact

that for a given probability distribution X(a), the exact configurational

entropy is given by [691: I

S= -kB • X(a)InX(a), [3.15) I
I

where the sum is over all 2N configurations of the crystal. A sequence

of cluster entropies defined by:

Sa= -kB • Xa(aa)lnXa(aa). 13.161 Ia I

clearly converges to the exact configurational entropy as the cluster

size a approaches N. Sanchez and de Fontaine 1691 used a M6bius

transformation to write the cluster entropies, Sa. in terms of a set of

Irreducible cluster contributions, Sp:

Sa= lap [3.171

I
I
I
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where the sum extends over all subclusters of a, including a but

I excluding the empty cluster. As in all cluster expansions the key

approximation of the CVM is to neglect the contributions & for

I clusters larger than a maximum cluster. Due to the symmetry of the

space group of the crystal. Equation 3.15 can be written as:I
S= Y, 1ný3.181

n=1

I where m labels the maximum cluster, and zn is the number of n-type

I clusters per lattice site. This equation, in turn, may be rewritten in

terms of cluster entropies:

I m
S =N I zn an Sn = -NkB I Zn anXXn(an) In Xn(an). [3.191I n=1 n=1 On

where the coefficients an are determined using:

Sap = , 3.201

which is valid for each subcluster a of the maximum cluster. In

Equation 3.20 the sum extends over all subclusters P of the maximum

clusters that contain a.
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I

3.3 CVM solution method I
Combining Equations 2.5, 3.14, and 3.19 into an expression

for the alloy free energy functional [141:

In-

in-

mkT zn an I X4(0) In X.(on) [3.211

where the cluster interactions Jn are obtained from a cluster

expansion of the excess structural energy and the excess vibrational

free energy. The alloy free energy expression depends explicitly only 3
upon the volume V. the temperature, and the correlations 4n, where

the cluster probabilities Xn may be determined by Equation 2.9: I

I

Then, for a given temperature and concentration, the equilibrium free

energy is obtained by minimizing the free energy functional with I
I
I
I
I
I
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I respect to the volume and the correlations. Recall that the point

correlation,

I1 = 2x, -1 = xj- x2 [2.221

is fixed for a given concentration xI (= c).

Calculation of phase boundaries is accomplished efficiently

using the grand potential scheme proposed by Kikuchi 170). The

grand potential is obtained by the Legendre transformation of the free

energy:I
f(t,T, {, V) = F(T,{ )., V) + gi• 13.231I

where { •} is the set of all correlations, and g is the effective chemical

I potential:

I a.F [3.24

I
since by definition:

F-= gplx + 9 2x2  , [3.25)

* and,

I
I
I
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I
WF F ax, + +aF dx2

=2- (,-i=g 1.[3.261
2

Similarly.
I

0 = F-x -x 2 )

I G*I + W [3.271 I
Therefore the conditions for equilibrium between phases a and (3 is

that:

[3.281

I
and I

[3.291

The solution procedure used most often for determining

phase boundaries in this study is to fix temperature and effective

chemical potential g. then using a Newton- Raphson iterative

algorithm to determine the equilibrium variables V and ( E. This I
I
I
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I algorithm includes an inner loop in which fa and CIO each are

minimized using a Joint minimization scheme. That is, for each phase

the minimization:

M - = 0 13.301
I aN. 4)

is achieved using the Newton-Raphson correction:

I IV. 4)"e = {V, )°d H-I x aQ , [3.311

I
where the Hessian H is:I

a2a a2

H = aia~j a4j av [3.14]

I a~i av av2

U The outer loop iterates on g until Equations 3.28 and 3.29 are

satisfied self-consistently.

The bcc miscibility gap in Zr-Nb was calculated using an

Ising Hamiltonian varying in maximum interaction range from second

nearest neighbors to fifth nearest neighbors and the CVM

approximation with maximum cluster size ranging from the

tetrahedron to the joint 9 point-6 point cluster. The results, shown in

I
'I
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Figure 3.7 indicate rapid convergence with the interaction range. m

Curves 1 through 4 are calculated using global relaxation. Curve 1

denotes the lowest order approximation of both the Hamiltonian and

the statistical range -- 2nd nearest neighbors, i. e., cluster set A as

defined in Table 2.2. If the statistical range is increased to include the

joint 9 point - 6 point cluster, but the Hamiltonian is confined to the

same basis set as Curve 1, there is very little change -- as seen by

comparing curves 1 and 2. If the Hamiltonian range is increased to I
include third nearest neighbors (basis set B in Table 2.2), there is a

large decrease in the critical temperature of the miscibility gap, curve

4. Inclusion of fifth nearest-neighbor interactions (basis set C Table

2.2) produces little change (curve 3) in the calculated miscibility gap.

Thus, the CVM calculation of the miscibility gap is deemed converged 3
at 3rd nearest neighbors. Using the same interaction range the

miscibility gap was calculated using totally relaxed interactions. The I
result, curve 5, is significantly different from the well converged

globally relaxed curve 4. A more physically representative relaxation

method should lie somewhere between the total and global relaxation

methods, but it should be reiterated that the globally relaxed cluster

expansion reproduced total energies very precisely.

The equilibrium of the hexagonal phase was calculated using

the Joint tetrahedron- octahedron cluster with second nearest I
neighbor interactions included. As discussed in Section 3.1 the

Debye temperatures of hexagonal alloys have been determined using a

coefficient in Equation 3.8 which reproduces the measured transition 3
I
I
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I temperature of pure Zr. This treatment yielded the phase diagram

shown in Figure 3.8. Also shown are several experimental data.

Global relaxation is assumed in the calculation. The computed

I critical temperature of the miscibility gap is 975 °C at 62% Nb

compared with the reported values of 988 IC and 61% Nb [7]. The

computed monotectoid equilibrium temperature is 855 °C compared

with the experimental 893 °C.I
I
I
I
I
I
I
I
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Figure 3.7. Zr-Nb miscibility gap calculated using different
approximations of the CVM:

1 - 2 "d nearest neighbors; tetrahedron

2 - 2"d nearest neighbors; 9 point- 6 point

3 - 5h nearest neighbors; 9 point - 6 point

4 - 3d nearest neighbors; 9 point - 6 point

5- 31 nearest neighbors; 9 point - 6 point; totally relaxed I
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I Figure 3.8. Calculated phase diagram for Zr-Nb along with

data from References 41 and 42. The calculations include third

nearest neighbors in the cluster expansion and globally

relaxed interactions.I
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CONCLUSIONS

The phase stability of alloys in each of the three systems Zr-Nb,

Nb-Ru, and Ru-Zr was examined using the cluster expansion

technique described in Chapter 2. The equation of state (Equation

1.5) for each of several perfectly ordered structures in each system

was computed using the local-density approximation 121 to density-

functional theory [1). The relatively short-range effective chemical

interactions were determined using the inversion of the cluster

expansion (Equation 2.9) of a set of total energies which, in general,

may depend upon very long-range interactions. The convergence of

the expansion and the sensitivity of the inversion to errors are

coupled problems of selecting optimum basis sets of clusters and

structures and are discussed in Sections 2.3-2.6. An efficient scheme

for obtaining a sufficiently converged expansion was developed and

applied to the three alloy systems. The method consists of an

arbitrary initial choice for the maximum interaction range for a given

Bravais lattice. For this maximum range there is a unique maximum

cluster (or set of Joint clusters) from which a set of sub-clusters are

-- chosen to form the cluster basis. An optimum choice of the set of

basis structures is then determined using the maximum determinant

method, and the total energies are calculated using the local density

approximation. For example, in the case of structures with the hcp

131
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parent lattice a maximum range of nearest neighbors was first I
chosen, for which, the associated largest cluster is a regular

tetrahedron. The eight different sub-clusters of this tetrahedron were

reduced to five by assuming the isotropy (or equivalence) of the

interactions among all three types of triangles and between the two

types of pairs. Since the vertices of the configurational polyhedron for

this choice of cluster set is known, the choice of basis structures was

obvious: the structures corresponding to those vertices. However, for I
Zr-Nb the interactions derived using this representation were

insufficient to reproduce the formation energy of the test structure so

the cluster basis was expanded to include second-nearest neighbors

with the regular tetrahedron retained as the largest cluster size. The

corresponding structure set was determined using the maximum

determinant method (Section 2.5), and the resulting cluster expansion

was deemed adequate by the convergence criterion (Section 2.6). I
In this study, the initial choices for and subsequent

augmentations of the basis cluster sets were made by somewhat ad

hoc methods. A fully rigorous implementation would consist of

exhaustive searches of each combination of sub-clusters for a given

interaction range and the use of large-scale vertex enumeration

studies neither of which are within the scope of this study. The three

criteria for choosing the basis structures yielded nearly identically I
converged expansions. As the determinant method is the simplest of

the three, it was used as the criterion in this study. The results

presented in Section 2. 6 indicate the precision of the cluster

I
I
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I expansions for these alloy systems as better than 5% of the formation

I energy.

Using the converged cluster expansions, limited ground-state

I searches were performed by calculating the formation energy of every

possible ordered structure for an a priori choice of maximum unit cell

I size. Using this method, the ground states of each of the three

systems were determined. Notably. the ground-state structure of

NbRu 3 was predicted to be the DO 1 9 structure. The calculated total

I energies of the DO19 and LI 2 structures are very close, and since no

relaxation of the c/a parameter of the hexagonal structure is allowed

I within the atomic-sphere approximation, a full-potential total energy

calculation is necessary for calculation of the margin of stability

I between the cubic and hexagonal structures.

An additional stable ground-state phase, Nb 3Ru with the DO 3

I crystal structure, is predicted using the cluster expansion. There is

I no experimental evidence of an ordered phase at this composition, but

this may due to the very similar scattering factors of Nb and Ru --

I which makes experimental determination of the ordering of the other

phases. NbRu (B2 and L10) and NbRu 3 difficult as well.

The cluster variation method is outlined in Sections 3.2 and 3.3

for calculation of the configurational free energy at finite

temperatures. Figure 3.7 indicates the rapid convergence of the

configurational entropy with the tetrahedron-octahedron or the nine

point-six point approximations for the hexagonal and bcc phases

respectively.
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The contribution of the vibrational entropy to the excess free I

energy is usually insignificant for alloys of the same lattice type.

However, for phase transformations in which the lattice type changes,

the vibrational free energy may be significant. This is the case for

pure Zr, which undergoes a transition from hcp to bcc at 8660 C. In

this study, vibrational free energy is calculated using the Debye- 1
Grnneisen approximation, and Debye temperatures calculated from

an effective speed of sound following Moruzzi et al [351. This

treatment allows the calculation of coefficients of thermal expansion

which for niobium compare very well with measurements (Figure 3.3).

The utility of this approach rests upon incorporating an effective

speed of sound for the phase. Moruzzi et al obtained the relation

(Equation 3.7) for cubic metals from data from Anderson [66). For

hexagonal phases this treatment is not applicable so, in this study. an

ad hoc treatment was adopted which requires a single adjustable

parameter. For simplicity, the parameter was adjusted to reproduce

the actual transition temperature of Zr.

The incorporation of vibrational free energy allows the

calculation of the full Zr-Nb phase diagram (Figure 3.8). The Ising

Hamiltonian for this system is well converged for both hcp and bcc

alloys as is the statistical approximation. The computed equilibria are

in excellent agreement with reported data: the critical point of the

miscibility gap is 9750C at 62% niobium, the measured values 9880C

and 61%, respectively.

I
I
I
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